武骥  (副教授)

硕士生导师

性别:男

学位:博士学位

毕业院校:中国科学技术大学

学科:车辆工程

A data-driven approach for estimating state-of-health of lithium-ion batteries considering internal resistance

点击次数:

影响因子:8.857

DOI码:10.1016/j.energy.2023.127675

发表刊物:Energy

关键字:Internal resistance; Lithium-ion batteries; State-of-health; Explanation boosting machine; Ant colony algorithm

摘要:State-of-health (SOH) estimation of lithium-ion batteries is an important issue in electric vehicle energy management. The complication of the internal electrochemical reaction mechanism and the uncertainty of the external operating conditions pose a significant challenge to SOH estimation. This paper develops a data-driven approach to estimate the SOH of lithium-ion batteries with consideration of the battery's internal resistance, which is used as a bridge to effectively integrate the equivalent circuit model (ECM) and the data-driven method. We try to identify the internal resistance under constant current charging conditions by simplifying the ECM. The poles and offsets are extracted from the differential thermal voltammetry, differential thermal capacity, and incremental capacity curves as thermoelectric coupling features. Then the internal resistance and thermoelectric coupling features are combined as model inputs. An explanation boosting machine (EBM) is used to construct the SOH estimator according to the good fitting performance and interpretability. The model parameters of EBM are optimized by using an ant colony algorithm to improve its robustness. Finally, comparative experiments between features and the model are carried out on the Oxford dataset. The results demonstrate that the mean absolute error of the proposed method is less than 1%.

论文类型:期刊论文

学科门类:工学

文献类型:J

卷号:277

页面范围:127675

是否译文:

发表时间:2023-04-27

发布期刊链接:https://www.sciencedirect.com/science/article/pii/S0360544223010691

上一条: Screening of retired batteries with gramian angular difference fields and ConvNeXt

下一条: State of health estimation with attentional long short-term memory network for lithium-ion batteries