武骥  (副教授)

硕士生导师

性别:男

学位:博士学位

毕业院校:中国科学技术大学

学科:车辆工程

A novel long short-term memory network for lithium-ion battery health diagnosis using charging curve

点击次数:

影响因子:2.146

DOI码:10.1177/01423312211040901

发表刊物:Transactions of the Institute of Measurement and Control

摘要:Lithium-ion batteries are widely used as the power source in electric vehicles. The state of health (SOH) diagnosis is very important for the safety and storage capacity of lithium-ion batteries. In order to accurately and robustly estimate lithium-ion battery SOH, a novel long short-term memory network (LSTM) based on the charging curve is proposed for SOH estimation in this work. Firstly, aging features that reflect the battery degradation phenomenon are extracted from the charging curves. Then, considering capture the long-term tendency of battery degradation, some improvements are made in the proposed LSTM model. The connection between the input gate and the output gate is added to better control output information of the memory cell. Meanwhile, the forget gate and input gate are coupled into a single update gate for selectively forgetting before the accumulation of information. To achieve more reliability and robustness of the SOH estimation method, the improved LSTM network is adaptively trained online by using a particle filter. Furthermore, to verify the effectiveness of the proposed method, we compare the proposed method with two data-driven methods on the public battery data set and the commercial battery data set. Experimental results demonstrate the proposed method can obtain the highest SOH accuracy.

论文类型:期刊论文

学科门类:工学

文献类型:J

页面范围:OnlineFirst

是否译文:

发表时间:2021-08-30

收录刊物:SCI、EI

上一条: Cloud-to-edge based state of health estimation method for Lithium-ion battery in distributed energy storage system

下一条: An extended Kalman filter based data-driven method for state of charge estimation of Li-ion batteries