柏海舰  (副教授)

硕士生导师

出生日期:1980-12-31

电子邮箱:

入职时间:2010-07-14

所在单位:道路与交通工程系

职务:系副主任

学历:研究生(博士)毕业

办公地点:屯溪路校区三立苑420

性别:男

联系方式:18019932836

学位:博士学位

在职信息:在职

主要任职:教学

毕业院校:东南大学

学科:车辆工程
交通运输工程其他专业
交通信息工程及控制
交通运输规划与管理

当前位置: 中文主页 >> 科学研究 >> 论文成果

DGLF-MPF: A Destination-Guided Motion Planning Framework for Autonomous Vehicles in Lane-Free Traffic

点击次数:

影响因子:7.9

DOI码:10.1016/j.trc.2025.105440

发表刊物:Transportation Research Part C: Emerging Technologies

关键字:Lane-free trafficIntelligent Agent ModelMotion planningAutonomous VehiclesDestination-GuidedTraffic flow simulation

摘要:Lane-Free Traffic (LFT) emerges as a promising transportation strategy, allowing autonomous vehicles (AVs) to move without the limitations of traditional lane-based systems. However, integrating short-term destination requirements, such as navigating ramps, into the real-time motion planning of non-connected AVs remains a major challenge. To address this, we propose the Destination-Guided, Lane-Free AV Motion Planning Framework (DGLF-MPF), which integrates lane-free following (LFF) with the intelligent agent model (IAM) based on social force theory. This framework incorporates short-term destination requirements to guide AV behavior planning, enabling efficient navigation in dynamic LFT. Calibration with the CitySim dataset confirms that DGLF-MPF accurately simulates realistic vehicle movements in on-ramp and off-ramp scenarios, effectively capturing personalized driving behaviors. Simulations in multi-ramp lane-free environments show that, compared to traditional lane-based systems, DGLF-MPF significantly improves traffic flow efficiency and space utilization. It showcases an obvious self-organizing phenomenon in complex ramp-mainline interactions. By incorporating dynamic avoidance and longitudinal deceleration mechanisms, the framework reduces traffic conflicts during merging and diverging, thereby enhancing driving comfort and traffic flow stability. These results provide strong support for implementing LFT management in more complex, real-world traffic scenarios.

论文类型:期刊论文

论文编号:105440

期号:182

是否译文:

发表时间:2025-11-15

收录刊物:SCI、EI

发布期刊链接:https://doi.org/10.1016/j.trc.2025.105440

下一条: The revolution of roundabouts in the autonomous driving era: A lane-free self-organized motion planning framework