研究方向
当前位置:
中文主页
>>研究方向
基于异质网络、知识图谱领域的机器学习
实际应用中普遍存在网络数据,如社交网络、信息网络、生物网络、知识图谱等。社交购物网络中包含用户、商品、店铺等多种类型的对象,对象之间的关系也不再只有购买,而是含有收藏、喜爱等更精细的交互。基于这些更精细的信息,可以产生更准确的知识发现结果。显然,与现有已被广泛研究的独立分布数据以及同质网络(即网络中节点或边具有相同的类型)相比,异质网络对节点的内涵表示和节点间的关系表示都进行了更深入的建模,蕴含了更丰富的结构和语义信息,从而为知识发现提供了更精准、可解释的新途径。如何挖掘这些信息对于我国经济、医学、教育等领域的发展具有重要价值。