• 其他栏目

    吴慕遥

    • 讲师 硕士生导师
    • 教师拼音名称:wumuyao
    • 出生日期:1995-12-08
    • 入职时间:2022-12-27
    • 所在单位:车辆工程系
    • 学历:博士研究生毕业
    • 办公地点:安徽省合肥市屯溪路193号合肥工业大学格物楼515
    • 性别:男
    • 联系方式:18256580186
    • 学位:工学博士学位
    • 在职信息:在职
    • 毕业院校:中国科学技术大学
    • 学科:车辆工程
    • 2022-12-01曾获荣誉当选:博士研究生国家奖学金
    • 2022-05-30曾获荣誉当选:安徽省优秀毕业生
    • 2022-05-30曾获荣誉当选:中国科学技术大学优秀毕业生
    • 2019-12-09曾获荣誉当选:中科大-苏州工业园区奖学金

    访问量:

    开通时间:..

    最后更新时间:..

    Capacity estimation of Lithium-ion batteries based on discharge rate compensation model under different discharge rates

    点击次数:

    影响因子:9.8

    DOI码:10.1016/j.est.2025.117325

    发表刊物:Journal of Energy Storage

    关键字:Lithium-ion battery; Capacity estimation; Discharge rate compensation model; Error compensation functions; Different discharge rates

    摘要:Accurate estimation of LFP battery capacity is important for improving system safety and extending battery life. Most existing research focuses on capacity estimation at a single discharge rate, neglecting the impact of discharge rate on battery capacity. Moreover, the trained models are often only applicable to specific discharge rates. To overcome this challenge, this paper proposes an adaptive capacity estimation method based on a discharge rate compensation model. Initially, a comparative analysis was conducted to examine the correlation between selected features and battery capacity at diverse discharge rates, revealing highly correlated feature ranges across all rates. Subsequently, optimal data-driven models were obtained by leveraging these features and employing Bayesian optimization. Finally, an error compensation function was incorporated into the optimal data-driven model to construct a discharge rate compensation model (DRCM), enabling capacity estimation across multiple discharge rate scenarios. The comparison results with deep learning and traditional machine learning show that the proposed DRCM has the best estimation performance, achieving 0.74% Mean Absolute Percentage Error (MAPE) and 0.99% Root Mean Square Percentage Error (RMSPE) for LFP batteries, and 1.56% MAPE and 2.12% RMSPE for NMC batteries, with training time only 1/6–1/20 of machine learning.

    备注:中科院2区

    合写作者:Changpeng Tan,Ji Wu,Duo Yang

    第一作者:Li Wang

    论文类型:期刊论文

    通讯作者:Muyao Wu

    论文编号:117325

    学科门类:工学

    文献类型:J

    卷号:131

    ISSN号:2352-152X

    是否译文:

    发表时间:2025-06-23

    收录刊物:SCI、EI

    发布期刊链接:https://www.sciencedirect.com/science/article/pii/S2352152X25020389