• 其他栏目

    吴慕遥

    • 讲师 硕士生导师
    • 教师拼音名称:wumuyao
    • 出生日期:1995-12-08
    • 入职时间:2022-12-27
    • 所在单位:车辆工程系
    • 学历:博士研究生毕业
    • 办公地点:安徽省合肥市屯溪路193号合肥工业大学格物楼515
    • 性别:男
    • 联系方式:18256580186
    • 学位:工学博士学位
    • 在职信息:在职
    • 毕业院校:中国科学技术大学
    • 学科:车辆工程
    • 2022-12-01曾获荣誉当选:博士研究生国家奖学金
    • 2022-05-30曾获荣誉当选:安徽省优秀毕业生
    • 2022-05-30曾获荣誉当选:中国科学技术大学优秀毕业生
    • 2019-12-09曾获荣誉当选:中科大-苏州工业园区奖学金

    访问量:

    开通时间:..

    最后更新时间:..

    State of health estimation of lithium-ion batteries based on the Kepler optimization algorithm-multilayer-convolutional neural network

    点击次数:

    影响因子:9.0

    DOI码:10.1016/j.est.2025.11664

    发表刊物:Journal of Energy Storage

    关键字:lithium-ion batteriesState of healthHealth indicatorsMultilayer-convolutional neural networkKepler optimization algorithm

    摘要:Lithium-ion batteries are widely used in electric vehicles (EVs), and accurate SOH estimation is essential for ensuring EV safety. This paper proposes a novel SOH estimation method based on the Kepler optimization algorithm-multilayer-convolutional neural network. Firstly, the extracted health indicators (HIs) are filtered, and highly correlated, continuous HIs are identified using Pearson correlation coefficient and scatter plots. Subsequently, the ReliefF algorithm is employed for further dimensionality reduction. Subsequently, a multilayer-convolutional neural network is constructed for SOH estimation, with the Kepler optimization algorithm (KOA) for hyperparameter optimization, a novel application according to the authors' knowledge. The SOH estimation results demonstrate that, a deeper CNN does not necessarily yield better results and the KOA-2-layer-CNN performs the best. Additionally, compared with the 2-layer-CNN without hyperparameters optimization, the mean absolute error (MAE), the root mean square error (RMSE), maximum absolute error (Max-AE) of the KOA-2-layer-CNN are decreased by 58.97 %, 53.33 %, 39.05 %, respectively. Moreover, compared with commonly used SOH estimation methods based on feature engineering, the KOA-2-layer-CNN also achieves accurate SOH estimation results, with significantly smaller MAE, RMSE, and Max-AE.

    备注:中科院2区

    合写作者:Xi Zhang,Zhongchun Wang,Changpeng Tan,Yuqing Wang

    第一作者:Muyao Wu

    论文类型:期刊论文

    通讯作者:Li Wang

    论文编号:116644

    学科门类:工学

    文献类型:J

    卷号:122

    ISSN号:2352-152X

    是否译文:

    发表时间:2025-04-08

    收录刊物:SCI、EI

    发布期刊链接:https://www.sciencedirect.com/science/article/pii/S2352152X2501357X