Impact Factor:6.371
DOI number:10.1016/j.jallcom.2016.07.077
Affiliation of Author(s):Northwestern Polytechnical University
Journal:Journal of Alloys and Compounds
Key Words:Strain rate sensitivity High strain rate forming Mechanisms Aluminum alloy
Abstract:The significant variation of strain rate sensitivity (SRS), i.e. the non-linear characteristics of SRS, within wide strain and strain rate ranges in high strain rate forming (HSRF) leads to the complexity of constitutive behaviors of aluminum alloys. Therefore, in order to achieve accurate simulation of HSRF process, a panoramic description of the SRS variation and related mechanisms are required within wide ranges. To address this problem, taking 5A06 aluminum alloy as an example, three distinct SRS zones were determined at 0.001 s−1–5000 s−1 in the present work, including quasi-static negative SRS zone (Zone-I), positive SRS zone at dynamic strain rate (Zone-II) and negative SRS zone at high strain and strain rate (Zone-III). Then, the mechanism for that in Zone-II is attributed to the conversion from dislocation glide to viscous drag through thermal activation analysis. In Zone-III, the dominant mechanisms are the change of dislocation configuration from dislocation cells and dislocation bands to subgrains in adiabatic shear bands in compression and to the increasing volume fraction of voids in tension, respectively, which is proved by SEM and TEM observations. Consequently, the effect of dislocation evolution on the SRS was quantitatively characterized and the nonlinear rate dependent stress responses of the aluminum alloy in a wide strain rate range were captured.
Co-author:X. Yao
First Author:S.L. Yan
Indexed by:Journal paper
Correspondence Author:H. Yang,H.W. Li
Discipline:Engineering
Document Type:J
Volume:688
Page Number:776-786
Translation or Not:no
Date of Publication:2016-12-15
Included Journals:SCI、EI
Links to published journals:https://www.sciencedirect.com/science/article/pii/S0925838816321107?via%3Dihub
Attachments:
Associate professor
Supervisor of Master's Candidates
Date of Birth:1989-09-02
E-Mail:
Date of Employment:2017-07-01
School/Department:Hefei University of Technology
Education Level:Postgraduate (Doctoral)
Business Address:材料楼南附楼413
Gender:Male
Degree:Doctoral degree
Status:Employed
Other Post:安徽省机械工程学会锻压专委会副秘书长
Alma Mater:Northwestern Polytechnical University
Discipline:Material Process Engineering
ZipCode :
PostalAddress :
Honors and Titles:
全国高校教师教学创新大赛安徽省赛区三等奖(2024) 2024-06-01
凡科优秀评审专家(2024) 2024-08-17
中国有色金属学报2022年度优秀论文(2024) 2024-02-01
安徽省大学生创新大赛总决赛创新创业导师(2024) 2024-08-01
中国材料研究学会科学技术奖(基础研究)二等奖(R2/4)(2024) 2024-07-10
党支部民主评议优秀党员(2023) 2024-01-01
党支部民主评议优秀党员(2022) 2023-01-01
全国高等学校教师教学创新大赛安徽赛区三等奖(2023) 2023-08-01
常州市“龙城英才计划”领军型创业人才(2022) 2022-04-22
西北工业大学优秀博士学位论文(2019) 2019-10-01
陕西省自然科学一等奖(R6/6)(2020) 2021-03-21
The Last Update Time : ..