Siliang Yan
Personal Homepage
Paper Publications
Mechanisms and forming rules of large thin-walled aluminum alloy components in electromagnetic incremental forming
Hits:

DOI number:10.1016/j.promfg.2018.07.354

Affiliation of Author(s):Hefei University of Technology

Journal:Procedia Manufacturing

Key Words:Electromagnetic incremental forming; Large thin-walled aluminum component; High velocity; Simulation; Forming quality

Abstract:Electromagnetic incremental forming is provided with the superiorities of improving the forming limit of materials and extending the scope of component dimension, and thus is a promising technique to realize high quality precision forming of large thin-walled aluminum components used in aviation and aerospace fields. However, electromagnetic incremental forming is a multi-parameter affected and multi-step complex dynamic forming process in which sheet metal undergoes repeated high velocity current-carrying local deformation, unloading and springback. With the change of multi-step processing parameters, the macro-plastic flow and micro-defects evolution behaviors change significantly, which brings about severe challenge to forming quality control. To this end, a macro-micro numerical model of the electromagnetic incremental forming process of large thin-walled aluminum components is established by introducing a micro-defects evolution coupled constitutive model for current-carrying dynamic deformation of aluminum alloy. By finite element simulation, the effect rules of multi-step discharging parameters, geometric parameters and discharging path on the forming profile and forming uniformity of the component are studied. Moreover, the correlation between the complex time-space distribution of electromagnetic field and forming quality indices are determined. Ultimately, an optimized electromagnetic incremental forming scheme is proposed and experimentally validated considering the comprehensive forming quality of large thin-walled aluminum components.

Co-author:Hong-wei Li,Ping Li

First Author:Si-liang Yan

Indexed by:Journal paper

Correspondence Author:Ke-min Xue

Discipline:Engineering

Document Type:J

Volume:15

Page Number:1306-1313

Translation or Not:no

Date of Publication:2018-08-11

Included Journals:SCI、EI

Links to published journals:https://www.sciencedirect.com/science/article/pii/S2351978918310503?via%3Dihub

Attachments:

Personal information

Associate professor
Supervisor of Master's Candidates

Date of Birth:1989-09-02

E-Mail:

Date of Employment:2017-07-01

School/Department:Hefei University of Technology

Education Level:Postgraduate (Doctoral)

Business Address:材料楼南附楼413

Gender:Male

Degree:Doctoral degree

Status:Employed

Other Post:安徽省机械工程学会锻压专委会副秘书长

Alma Mater:Northwestern Polytechnical University

Discipline:Material Process Engineering

ZipCode :

PostalAddress :

Honors and Titles:

全国高校教师教学创新大赛安徽省赛区三等奖(2024)  2024-06-01

凡科优秀评审专家(2024)  2024-08-17

中国有色金属学报2022年度优秀论文(2024)  2024-02-01

安徽省大学生创新大赛总决赛创新创业导师(2024)  2024-08-01

中国材料研究学会科学技术奖(基础研究)二等奖(R2/4)(2024)  2024-07-10

党支部民主评议优秀党员(2023)  2024-01-01

党支部民主评议优秀党员(2022)  2023-01-01

全国高等学校教师教学创新大赛安徽赛区三等奖(2023)  2023-08-01

常州市“龙城英才计划”领军型创业人才(2022)  2022-04-22

西北工业大学优秀博士学位论文(2019)  2019-10-01

陕西省自然科学一等奖(R6/6)(2020)  2021-03-21

You are visitors

The Last Update Time : ..


Contact us: No. 193, Tunxi Road, Hefei City, Anhui Province (230009) Post Code: 230009
Copyright © 2019 Hefei University of  Technology
Anhui Public Network Security No. 34011102000080 Anhui ICP No. 05018251-1

MOBILE Version