• 其他栏目

    吴慕遥

    • 讲师 硕士生导师
    • 教师拼音名称:wumuyao
    • 出生日期:1995-12-08
    • 入职时间:2022-12-27
    • 所在单位:车辆工程系
    • 学历:博士研究生毕业
    • 办公地点:安徽省合肥市屯溪路193号合肥工业大学格物楼515
    • 性别:男
    • 联系方式:18256580186
    • 学位:工学博士学位
    • 在职信息:在职
    • 毕业院校:中国科学技术大学
    • 学科:车辆工程
    • 2022-12-01曾获荣誉当选:博士研究生国家奖学金
    • 2022-05-30曾获荣誉当选:安徽省优秀毕业生
    • 2022-05-30曾获荣誉当选:中国科学技术大学优秀毕业生
    • 2019-12-09曾获荣誉当选:中科大-苏州工业园区奖学金

    访问量:

    开通时间:..

    最后更新时间:..

    State of health estimation of the LiFePO4 power battery based on the forgetting factor recursive Total Least Squares and the temperature correction

    点击次数:

    影响因子:9.0

    DOI码:10.1016/j.energy.2023.128437

    发表刊物:Energy

    关键字:LiFePO4 Power Battery, Forgetting Factor Recursive Total Least Squares, Temperature Correction, Capacity Convergence Coefficient, Arrhenius Equation

    摘要:The decline of the lithium-ion power battery's State of Health (SOH) with usage significantly impacts other state estimation results, such as State of Charge (SOC). Hence, accurate estimation of the lithium-ion power battery's SOH holds vital importance in the battery management system. This paper proposes a SOH estimation method for the lithium-ion power battery, utilizing the Forgetting Factor Recursive Total Least Squares (FFRTLS) and incorporating the temperature correction. The FFRTLS effectively addresses the SOC estimation errors and the terminal current measurement noise simultaneously. The temperature correction method, based on the Arrhenius equation, corrects the influence of the ambient temperature during the SOH estimation process, ensuring that the ambient temperature does not affect the accuracy of the SOH estimation results. Additionally, the capacity convergence coefficient enhances the reliability of the SOH estimation results by preventing abrupt changes of the maximum available capacity. Experimental results on a LiFePO4 power battery under diverse working conditions and varying ambient temperatures, validate the effectiveness of the proposed method. The evaluation indexes, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Maximum Absolute Error (Max-AE), demonstrate the high accuracy of the SOH estimation results, with all indexes below 0.21%, 0.25% and 0.35% respectively.

    备注:中科院1区Top

    合写作者:Li Wang

    第一作者:Muyao Wu

    论文类型:期刊论文

    通讯作者:Ji Wu

    论文编号:128437

    学科门类:工学

    文献类型:J

    卷号:282

    ISSN号:0360-5442

    是否译文:

    发表时间:2023-07-13

    收录刊物:SCI、EI

    发布期刊链接:https://www.sciencedirect.com/science/article/pii/S0360544223018315