吴慕遥
开通时间:..
最后更新时间:..
点击次数:
影响因子:9.4
DOI码:10.1016/j.est.2021.102841
发表刊物:Journal of Energy Storage
关键字:State of charge (SoC), Power lithium-ion battery, Adaptive Kalman FilterAdaptive, Forgetting Factor Adaptive Kalman Filter, Unknown terminal current
摘要:Due to the lack of direct measurement, how to accurate estimate the State of charge (SoC) becomes one of the most crucial tasks in the battery management system recently. In this paper, a linear model with the Variable Forgetting Factor Adaptive Kalman Filter is proposed for the SoC estimation. Firstly, Multiple Linear Regression and Adaptive Kalman Filter are used to predict the initial values of model parameters and determine their threshold. Then, Variable Forgetting Factor Adaptive Kalman Filter (VFFAKF) is proposed for the first time, which makes full use of posterior measurement correction rather than just the current error. Numerical experiments demonstrate the effectiveness of our linear model in estimating the SoC Regardless of whether the exact terminal current is known or not, which is better than the traditional Rint and Thevenin Models. The traditional Rint and Thevenin Models can only obtain acceptable estimation results when the exact terminal current is known. The RMSE of SoC estimation results with the proposed method in this paper is less than 1.4%.The RMSE of the Rint model is larger than 3.6% and the RMSE of the Thevenin model is larger than 2.1% at 0°C with the traditional Extended Kalman Filter (EKF). When the temperature reaches to 25°Cand 45°C, the slight increase of the RMSE of our linear model can be compensated by the significantly reduced execution time, which implies a good balance between the estimation accuracy and the computation burden. When the terminal current is unknown exactly, the linear model can reach an acceptable results, the maximum error is less than 5% in FUDS, 25°C. However, neither Rint model nor Thevenin model can obtain good estimation results, especially at the tail end of discharge.
备注:中科院2区Top
合写作者:Linlin Qin,Gang Wu
第一作者:Muyao Wu
论文类型:期刊论文
论文编号:102841
学科门类:工学
文献类型:J
卷号:41
ISSN号:2352-152X
是否译文:否
发表时间:2021-07-02
收录刊物:SCI、EI
发布期刊链接:https://www.sciencedirect.com/science/article/pii/S2352152X2100565X