CN

Bai Haijian

Associate professor

Supervisor of Master's Candidates

Date of Birth:1980-12-31

Date of Employment:2010-07-14

School/Department:道路与交通工程系

Administrative Position:系副主任

Education Level:Postgraduate (Doctoral)

Business Address:屯溪路校区三立苑420

Gender:Male

Degree:Doctoral degree

Status:Employed

Academic Titles:教学

Alma Mater:东南大学

Discipline:Other specialties in Traffic and Transportation Engineering
Transportation Information Engineering and Control
Transportation Planning and Management

Paper Publications

Hai-Jian Bai*, Chen-Chen Guo, Heng Ding. Modeling differential car-following behavior under normal and rainy conditions: A memory-based deep learning method with attention mechanism

Release time:2024-03-21 Hits:

DOI number:10.1088/1674-1056/acaa2f

Journal:Chinese Physics B

Abstract:In order to analyze and learn the difference in car-following behavior between normal and rainy days, we first collect car-following trajectory data of an urban elevated road on normal and rainy days by microwave radar and analyze the differences in speed, relative speed, acceleration, space headway, and time headway among data through statistics. Secondly, owing to the time-series characteristics of car-following data, we use the long short-term memory (LSTM) neural network optimized by attention mechanism (AM) and sparrow search algorithm (SSA) to learn the different car-following behaviors under different weather conditions and build corresponding models (ASL-Normal, ASL-Rain, where ASL stands for AM-SSA-LSTM), respectively. Finally, the simulation test shows that the mean square error (MSE) and reciprocal of time-to-collision (RTTC) of the ASL model are better than those of LSTM and intelligent diver model (IDM), which is closer to the real data. The ASL model can better learn different driving behaviors on normal and rainy days. However, it has a higher sensitivity to weather conditions from cross test on normal and rainy data-sets which need classification training or sample diversification processing. In the car-following platoon simulation, the stability performances of two models are excellent, which can describe the basic characteristics of traffic flow on normal and rainy days. Comparing with ASL-Rain model, the convergence time of ASL-Normal is shorter, reflecting that cautious driving behavior on rainy days will reduce traffic efficiency to a certain extent. However, ASL-Normal model produces a more severe and frequent traffic oscillation within a shorter period because of aggressive driving behavior on normal days.

Indexed by:Journal paper

Discipline:Engineering

Document Type:J

Volume:32

Issue:6

Page Number:060507

ISSN No.:1674-1056

Translation or Not:no

Date of Publication:2023-06-01

Included Journals:SCI

Links to published journals:https://dx.doi.org/10.1088/1674-1056/acaa2f

Click:times | The Founding Time:.. | The Last Update Time:..

Contact us: No. 193, Tunxi Road, Hefei City, Anhui Province (230009) Post Code: 230009
Copyright © 2019 Hefei University of  Technology
Anhui Public Network Security No. 34011102000080 Anhui ICP No. 05018251-1

Hefei University of Technology

MOBILE Version