马羊  (副教授)

硕士生导师

入职时间:2022-08-29

所在单位:汽车与交通工程学院

学历:博士研究生毕业

办公地点:三笠苑422

性别:男

学位:工学博士学位

在职信息:在职

毕业院校:东南大学

   

Point Cloud-based Optimization of Roadside LiDAR Placement at Constructed Highways

点击次数:

影响因子:10.517

DOI码:10.1016/j.autcon.2022.104629

所属单位:汽车与交通工程学院

发表刊物:Automation in Construction

刊物所在地:Netherland

项目来源:合肥工业大学人才引进基金;加拿大自然科学与工程研究基金

关键字:Sensor placement, Optimization, Roadside LiDAR, Point cloud data, Deep learning

摘要:Current approaches for optimizing the placement of roadside LiDAR (RSL) at constructed highways work on handcrafted scenes which fail to precisely map real-world situations. This study proposes a computer-aided framework to address the issue. First, high-accuracy point cloud data are introduced to model the as-built highway infrastructures, based on which an unsupervised clustering approach is applied to segment the target monitoring area (TMA). Then, candidate RSL locations are generated in a semi-automated manner combining manual delineation and spline resampling. Next, new deterministic and a U-net-based LiDAR models are separately developed to virtually estimate candidate RSL’s joint coverage. Finally, based on the proposed sensor models, a detection matrix is created to facilitate the application of binary integer programming that minimizes the number of RSL while ensuring complete coverage of TMA. The tests on point cloud data of the three different sites demonstrate the effectiveness of the proposed workflow

备注:智慧建造Top期刊

合写作者:王书易,Wong, Yiik Diew,Easa, Said

第一作者:马羊

论文类型:期刊论文

通讯作者:郑玉冰

论文编号:104629

学科门类:工学

文献类型:J

卷号:144

期号:2022

页面范围:104629

字数:10946

是否译文:

发表时间:2022-10-18

收录刊物:SCI、EI

发布期刊链接:https://www.sciencedirect.com/science/article/pii/S092658052200499X

附件:

  • Point cloud-based optimization of roadside LiDAR placement at constructed highways.pdf

  • 上一条: A Virtual Method for Optimizing Deployment of Roadside Monitoring Lidars at As-built Intersections

    下一条: Automatic Framework for Detecting Obstacles Restricting 3D Highway Sight Distance Using MLS Data