Marouane Bouadi  (副教授)

出生日期:1991-12-10

电子邮箱:

入职时间:2023-03-15

所在单位:运输与物流工程系

职务:特任副教授

学历:博士研究生毕业

办公地点:汽车与交通工程学院,三立苑 311室

性别:男

联系方式:bouadi@hfut.edu.cn

学位:博士学位

在职信息:在职

学科:交通信息工程及控制

   
当前位置: 中文主页 >> 科学研究 >> 论文成果

Optimizing sensitivity parameters of automated driving vehicles in an open heterogeneous traffic flow system

点击次数:

影响因子:3.3

发表刊物:Transportmetrica A

摘要:In this paper, we attempt to address the issue of controlling the sensitivity parameters (or control gains) of automated driving vehicles in an open heterogeneous traffic flow system. The automated driving vehicles are supposedly equipped with adaptive cruise control and connectivity while the conventional vehicles are characterized by a stochastic safe time headway. To optimize the sensitivity parameters, the natural policy gradient reinforcement learning algorithm has been used for the best policy search. In this context, two performance indices were considered: the traffic breakdown probability and fuel consumption. After extensive simulations, it is found that the sensitivity parameters should depend on both the flow and the penetration rate for maximum performance. In particular, a low-penetration rate of 5% can improve traffic performance. A comparison with other algorithms suggests that natural policy gradient and Q-learning yield a good approximation and reduce significantly the computational cost.

第一作者:Marouane Bouadi, Bin Jia, Rui Jiang, Xingang Li, Ziyou Gao

论文类型:期刊论文

论文编号:762-806

卷号:18

是否译文:

发表时间:2021-03-11

收录刊物:SCI、SSCI

上一条: Stability analysis of stochastic second-order macroscopic continuum models and numerical simulations

下一条: The investigation of the reentrance phenomenon in cellular automaton traffic flow model