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第二章 等价和秩
1 向量组

2 矩阵的秩

3 标准正交基

4 线性方程组



第一节 向量组
线性组合

线性相关和线性无关

线性相关和线性无关的性质

维数和秩

极大线性无关组



向量组

我们将一些具有相同维数的向量放在一起称之为向量组(可以有重复的):

例如:

• α1 = (1, 1, −1)T, α2 = (2, 1, 2)T, α3 = (3, 2, 1)T;
• αT

1 = (1, 1, −1), αT
2 = (2, 1, 2), αT

3 = (3, 2, 1);
• m × n 矩阵 A 的 m 行可以看成 m 个行向量, 它们构成一个向量组, 叫做 A 的行向
量组;

• 类似地, A 的列向量构成它的列向量组.
• e1 = (1, 0, . . . , 0)T, e2 = (0, 1, . . . , 0)T, . . . , en = (0, 0, . . . , 1)T.

线性代数 ▶第二章 等价和秩 ▶ 1 向量组
□□⊞□□□□⊞□□□□□□⊞□□□□□□□□□⊞□□□⊞□□□□ 1 / 105
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基 非考试内容

对于标准向量空间 V = Rn, 我们可以将任一 v ∈ V 唯一地表达为形式

v = λ1e1 + λ2e2 + · · · + λnen,

其中
e1 = (1, 0, . . . , 0)T, e2 = (0, 1, . . . , 0)T, . . . , en = (0, 0, . . . , 1)T.

定义. 设 V 是线性空间. 若 α1, . . . , αm ∈ V 满足: 对任意 v ∈ V , 存在唯一的一组数
λ1, . . . , λm 使得

v = λ1α1 + · · · + λmαm,

则称 α1, . . . , αm 是 V 的一组基.

如何判断一组向量是不是基呢? 这需要线性组合和线性无关的概念.

线性代数 ▶第二章 等价和秩 ▶ 1 向量组
□□⊞□□□□⊞□□□□□□⊞□□□□□□□□□⊞□□□⊞□□□□ 2 / 105
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向量组的线性组合

定义. 设 α1, . . . , αm, β 为 n 维向量. 若存在一组数 λ1, . . . , λm 使得

β = λ1α1 + · · · + λmαm,

则称 β 可以被向量组 {α1, . . . , αm} 线性表示, 或称 β 是向量组 {α1, . . . , αm} 的线性组
合.

例.

(1) n 维零向量是任一 n 维向量组的线性组合.
(2) 任意 n 维向量是 e1, . . . , en 的线性组合.
(3) v ∈ V 是它的一组基的线性组合.
(4) 空间中两条不共线的向量的线性组合全体就是过二者的平面.

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶A 线性组合
□□⊞□□□□⊞□□□□□□⊞□□□□□□□□□⊞□□□⊞□□□□ 3 / 105
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线性表示的矩阵刻画

向量 β 能被向量组 α1, . . . , αm 线性表示,

当且仅当存在 λ1, . . . , λm 使得

β = λ1α1 + · · · + λmαm = (α1, . . . , αm)

λ1
...

λm

 ,

即 Ax = β 有解, 其中 A = (α1, . . . , αm).

定理. 向量 β 能被 A 的列向量组线性表示, 当且仅当 Ax = β 有解.

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶A 线性组合
□□⊞□□□□⊞□□□□□□⊞□□□□□□□□□⊞□□□⊞□□□□ 4 / 105
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线性表示的空间刻画

设向量组 S 是 A 的列向量组.

记 V 为向量组 S 能线性表示的向量全体, 则

V = {Ax | x ∈ Rm} ⊆ Rn

是一个线性空间, 称为 S 生成的空间. 它是包含 S 中所有向量的最小的线性空间.
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向量组等价及其矩阵、空间刻画

定义.

(1) 设有两个向量组 S = {α1, . . . , αm}, T = {β1, . . . , βk}. 若 β1, . . . , βk 均可以被 S 线
性表示, 则称向量组 T 可以被向量组 S 线性表示.

(2) 若向量组 S 和 T 能相互线性表示, 则称 S, T 向量组等价.

设 A = (α1, . . . , αm), B = (β1, . . . , βk). T 能被 S 线性表示, 当且仅当存在
x1, . . . , xk 使得

Ax1 = β1, . . . , Axk = βk,

即存在矩阵 X 使得 AX = B.

定理. 设 S, T 分别为 A, B 的列向量组, 且分别生成空间 V, W .

(1) T 可以被 S 线性表示 ⇐⇒ W ⊆ V ⇐⇒ ∃X 使得 AX = B.
(2) S, T 向量组等价 ⇐⇒ W = V ⇐⇒ ∃X, Y 使得 B = AX, A = BY .

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶A 线性组合
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向量组的等价的性质

命题. 向量组的等价满足如下性质:

(1) 自反性: S ∼ S;
(2) 对称性: S ∼ T =⇒ T ∼ S;
(3) 传递性: S ∼ T, T ∼ R =⇒ S ∼ R.

若矩阵 A
c∼ B 列等价, 则存在可逆矩阵 Q 使得 B = AQ, 于是二者的列向量组作

为向量组等价. 但是反过来不成立. 这是因为列等价的矩阵一定是同型矩阵, 但等价的向
量组并不要求向量数量相同. 不过, 同型矩阵 A, B 列向量组等价 ⇐⇒ A

c∼ B. 我们稍
后证明.

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶A 线性组合
□□⊞□□□□⊞□□□□□□⊞□□□□□□□□□⊞□□□⊞□□□□ 7 / 105
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线性相关与线性无关

定义. 对于 n 维向量组 {α1, . . . , αm}, 若存在一组不全为零的数 λ1, . . . , λm 使得

λ1α1 + · · · + λmαm = 0,

则称该向量组线性相关. 否则称该向量组线性无关.

例.

(1) α1 = (1, 2, 3)T, α2 = (2, 3, 4)T, α3 = (0, 0, 0)T 线性相关. 包含零向量的向量组总是
线性相关的.

(2) e1 = (1, 0, 0)T, e2 = (0, 1, 0)T, e3 = (0, 0, 1)T 线性无关. 一般地, n 维基本向量组
e1, . . . , en 线性无关.

(3) α 线性相关 ⇐⇒ α = 0.
(4) α1, α2 线性相关 ⇐⇒ α1, α2 对应分量成比例 (共线).

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶B 线性相关和线性无关
□□⊞□□□□⊞□□□□□□⊞□□□□□□□□□⊞□□□⊞□□□□ 8 / 105
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线性无关的等价刻画

向量组 α1, . . . , αm 线性无关

当且仅当
λ1α1 + · · · + λmαm = 0 =⇒ λ1 = · · · = λm = 0,

即 Ax = 0 只有零解, 其中 A = (α1, · · · , αm).
若 β = Aξ, 则 Ax = β ⇐⇒ A(x − ξ) = 0. 因此:

定理.

(1) 设 V 是 A 列向量生成的空间, 则以下结论等价:

• A 的列向量组线性无关;
• Ax = 0 只有零解;
• ∃v ∈ V , Ax = v 只有唯一解;
• ∀v ∈ V , Ax = v 只有唯一解.

(2) 向量组 S 是线性空间 V 的一组基 ⇐⇒ S 线性无关且生成 V .

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶B 线性相关和线性无关
□□⊞□□□□⊞□□□□□□⊞□□□□□□□□□⊞□□□⊞□□□□ 9 / 105
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即 Ax = 0 只有零解, 其中 A = (α1, · · · , αm).
若 β = Aξ, 则 Ax = β ⇐⇒ A(x − ξ) = 0. 因此:

定理.
(1) 设 V 是 A 列向量生成的空间, 则以下结论等价:

• A 的列向量组线性无关;
• Ax = 0 只有零解;
• ∃v ∈ V , Ax = v 只有唯一解;
• ∀v ∈ V , Ax = v 只有唯一解.

(2) 向量组 S 是线性空间 V 的一组基 ⇐⇒ S 线性无关且生成 V .

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶B 线性相关和线性无关
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例: 线性无关和线性相关

练习. 设 A =

1 2 −2
2 1 2
3 0 4

 , α =

k
1
1

. 若 Aα 和 α 线性相关, 则 k =

−1

.

练习. 已知向量组 {α1, α2} 线性无关, 请问向量组 {α1 − α2, α1 + α2, α1} 是否线性无关?

答案. 线性相关, 因为 (α1 − α2) + (α1 + α2) − 2α1 = 0.

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶B 线性相关和线性无关
□□⊞□□□□⊞□□□□□□⊞□□□□□□□□□⊞□□□⊞□□□□ 10 / 105
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例: 判断线性无关

例. 已知向量组 {α1, α2, α3} 线性无关, 证明向量组 {α1 + α2, α2 + α3, α3 + α1} 线性无
关.

证明. 我们可以用定义来直接证明.

设

λ1(α1 + α2) + λ2(α2 + α3) + λ3(α3 + α1) = 0.

那么
(λ1 + λ3)α1 + (λ1 + λ2)α2 + (λ2 + λ3)α3 = 0.

由于 {α1, α2, α3} 线性无关, 因此

λ1 + λ3 = λ1 + λ2 = λ2 + λ3 = 0,

解得 λ1 = λ2 = λ3 = 0. 证毕.

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶B 线性相关和线性无关
□□⊞□□□□⊞□□□□□□⊞□□□□□□□□□⊞□□□⊞□□□□ 11 / 105
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例: 判断线性无关

我们来看另一种证法.

另证. 我们有
(α1 + α2, α2 + α3, α3 + α1) = (α1, α2, α3)A,

其中 A =

1 0 1
1 1 0
0 1 1

.

若 (α1 + α2, α2 + α3, α3 + α1)x = 0, 则

(α1, α2, α3)Ax = 0 =⇒ Ax = 0

由于 |A| = 2, A 可逆, 因此 x = 0.

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶B 线性相关和线性无关
□□⊞□□□□⊞□□□□□□⊞□□□□□□□□□⊞□□□⊞□□□□ 12 / 105
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例: 判断线性无关

命题.

(1) 设 α1, . . . , αm 线性无关, (β1, . . . , βn) = (α1, . . . , αm)C. β1, . . . , βn 线性无关
⇐⇒ Cx = 0 只有零解.

(2) 设 α1, . . . , αm 线性无关, (β1, . . . , βm) = (α1, . . . , αm)C. β1, . . . , βm 线性无关
⇐⇒ |C| ̸= 0.

(3) n 维向量组 α1, . . . , αn 线性无关 ⇐⇒ |α1, · · · , αn| ̸= 0.

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶B 线性相关和线性无关
□□⊞□□□□⊞□□□□□□⊞□□□□□□□□□⊞□□□⊞□□□□ 13 / 105
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例: 判断线性无关

例. α1 = (1, 2, 3)T, α2 = (2, 3, 4)T, α3 = (3, 5, 7)T 线性相关.

因为它们构成的 3 阶矩阵行
列式为零.

练习.

(1) 若向量组 α1 = (1, 1, 1)T, α2 = (1, 2, 3)T, α3 = (1, 3, t)T 线性相关, 则 t =

5

.
(2) 若任一 3 维向量都可由向量组 α1 = (a, 3, 2)T, α2 = (2, −1, 3)T, α3 = (3, 2, 1)T 线性
表示, 则 a ̸=

5

.

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶B 线性相关和线性无关
□□⊞□□□□⊞□□□□□□⊞□□□□□□□□□⊞□□□⊞□□□□ 14 / 105
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(1) 若向量组 α1 = (1, 1, 1)T, α2 = (1, 2, 3)T, α3 = (1, 3, t)T 线性相关, 则 t =

5

.

(2) 若任一 3 维向量都可由向量组 α1 = (a, 3, 2)T, α2 = (2, −1, 3)T, α3 = (3, 2, 1)T 线性
表示, 则 a ̸=

5
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线性相关和线性无关的等价刻画

定理. 向量组 α1, . . . , αm 线性相关 ⇐⇒ 其中至少有一个向量可以由其它向量线性表示.

证明. 若该向量组线性相关, 则存在不全为零的数 λ1, . . . , λm 使得

λ1α1 + · · · + λmαm = 0.

设 λi ̸= 0, 则 αi = − 1
λi

m∑
j=1
j ̸=i

λjαj 可由其它向量线性表示.

反之, 若 αi =
m∑

j=1
j ̸=i

λjαj 可由其它向量线性表示. 则 −αi +
m∑

j=1
j ̸=i

λjαj = 0, 向量组

α1, . . . , αm 线性相关.

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶C 线性相关和线性无关的性质
□□⊞□□□□⊞□□□□□□⊞□□□□□□□□□⊞□□□⊞□□□□ 15 / 105
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线性相关和线性无关的等价刻画

向量组 α1, . . . , αm 线性无关 ⇐⇒ 其中任一向量不可以由其它向量线性表示.

注意, 向量组 α1, . . . , αm 线性相关 ≠⇒其中任一向量可以由其它向量线性表示.

练习. 设 α1, . . . , αm 是 m 个 n 维向量, 则下列结论正确的有

1

个.

(1) 若 α1, . . . , αm 线性相关, 则其中任一向量均可由其余向量线性表示
(2) 若 αm 不能由 α1, . . . , αm−1 线性表示, 则向量组 α1, . . . , αm 线性无关

(3) 若 α1, . . . , αm 线性相关, 且存在不全为零的 λ1, . . . , λm−1 使得
λ1α1 + · · · + λm−1αm−1 = 0, 则 αm 不能由 α1, . . . , αm−1 线性表示

(4) 若 α1, . . . , αm 线性相关, 且 αm 不能由 α1, . . . , αm 线性表示, 则 α1, . . . , αm−1 线性
相关

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶C 线性相关和线性无关的性质
□□⊞□□□□⊞□□□□□□⊞□□□□□□□□□⊞□□□⊞□□□□ 16 / 105
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练习. 设 α1, . . . , αm 是 m 个 n 维向量, 则下列结论正确的有

1

个.
(1) 若 α1, . . . , αm 线性相关, 则其中任一向量均可由其余向量线性表示
(2) 若 αm 不能由 α1, . . . , αm−1 线性表示, 则向量组 α1, . . . , αm 线性无关

(3) 若 α1, . . . , αm 线性相关, 且存在不全为零的 λ1, . . . , λm−1 使得
λ1α1 + · · · + λm−1αm−1 = 0, 则 αm 不能由 α1, . . . , αm−1 线性表示

(4) 若 α1, . . . , αm 线性相关, 且 αm 不能由 α1, . . . , αm 线性表示, 则 α1, . . . , αm−1 线性
相关

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶C 线性相关和线性无关的性质
□□⊞□□□□⊞□□□□□□⊞□□□□□□□□□⊞□□□⊞□□□□ 16 / 105



线性相关和线性无关的等价刻画

向量组 α1, . . . , αm 线性无关 ⇐⇒ 其中任一向量不可以由其它向量线性表示.

注意, 向量组 α1, . . . , αm 线性相关 ≠⇒其中任一向量可以由其它向量线性表示.
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线性相关和线性无关的性质

定理. 设向量组 S = {α1, . . . , αm}, T = {α1, . . . , αm, αm+1, . . . , αs}.

(1) 若向量组 S 线性相关, 则 T 也线性相关.
(2) 若向量组 T 线性无关, 则 S 也线性无关.

即部分相关 =⇒ 整体相关, 整体无关 =⇒ 部分无关.

例. n 维向量组 α1, . . . , αs(3 ⩽ s ⩽ n) 线性无关 ⇐⇒ (

D

).

α1, . . . , αs 中存在一个向量不能由其余向量线性表示

必要

(A)
α1, . . . , αs 中任两个向量都线性无关

必要

(B)
α1, . . . , αs 中不含零向量

必要

(C)
α1, . . . , αs 中任一个向量都不能由其余向量线性表示(D)

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶C 线性相关和线性无关的性质
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例: 线性相关和线性无关

练习. 若向量组 α, β, γ 线性无关, α, β, δ 线性相关, 则(

C

).

α 一定能由 β, γ, δ 线性表示(A) β 一定不能由 α, γ, δ 线性表示(B)
δ 一定能由 α, β, γ 线性表示(C) δ 一定不能由 α, β, γ 线性表示(D)

例. 设向量 β 可由 α1, . . . , αm 线性表示, 但不能由向量组 S = {α1, . . . , αm−1} 线性表示.
记 T = {α1, . . . , αm−1, β}, 则(

B

).

β = λ1α1 + · · · + λmαm, λm ̸= 0

αm 不能由 S 线性表示, 也不能由 T 线性表示(A)
αm 不能由 S 线性表示, 但能由 T 线性表示(B)
αm 能由 S 线性表示, 也能由 T 线性表示(C)
αm 能由 S 线性表示, 但不能由 T 线性表示(D)

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶C 线性相关和线性无关的性质
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例: 线性相关和线性无关

例. 设向量组 α1, α2, α3 线性相关, α2, α3, α4 线性无关, 证明

(1) α1 能由 α2, α3 线性表示;
(2) α4 不能由 α1, α2, α3 线性表示.

证明.

(1) 由 α2, α3, α4 线性无关可知 α2, α3 线性无关.

但是 α1, α2, α3 线性相关, 所以 α1 能
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线性相关和线性无关的性质

定理. 设 αj = (a1j , . . . , anj)T, βj = (a1j , . . . , anj , an+1,j)T.

(1) 若向量组 α1, . . . , αm 线性无关, 则 β1, . . . , βm 线性无关.
(2) 若向量组 β1, . . . , βm 线性相关, 则 α1, . . . , αm 线性相关.

证明. 设 A = (α1, . . . , αm), B = (β1, . . . , βm), 则存在 m 维向量 γ 使得 B =
(

A
γT

)
.

若

向量组 α1, . . . , αm 线性无关, 则 Ax = 0 只有零解. 而

Bx = 0 ⇐⇒ Ax = 0, γTx = 0,

因此 x = 0, Bx = 0 只有零解, β1, . . . , βm 线性无关.

即高维相关 =⇒ 低维相关, 低维无关 =⇒ 高维无关.
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例: 线性相关和线性无关

练习.

(1) 判断下列向量组的线性相关性:

(1, 2, 3, 4)T, (2, 3, 4, 5)T, (0, 0, 0, 0)T.

相关

(i)
(a, b, 1, 0, 0)T, (c, d, 0, 6, 0)T, (a, c, 0, 5, 6)T.

无关

(ii)
(a, 1, 0, b, 0)T, (c, 0, 6, d, 0)T, (a, 0, 5, c, 6)T.

无关

(iii)

(2) 若 (1, 0, 0, 2)T, (0, 1, 5, 0)T, (2, 1, t + 2, 4)T 线性相关, 则 t =

3

.

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶C 线性相关和线性无关的性质
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向量组大小与线性无关的关系

定理. 设向量组 S = {α1, . . . , αs} 可由 T = {β1, . . . , βt} 线性表示.

若 s > t, 则 S 线性相关.(1) 若 S 线性无关, 则 s ⩽ t.(2)

即多的由少的表示, 多的一定线性相关.

证明. 设 A = (α1, . . . , αs), B = (β1, . . . , βt). 则存在矩阵 P 使得 A = BP .

由于 P 行
数小于列数, 因此 P x = 0 有非零解 x. 从而 Ax = BP x = 0, S 线性相关.

推论.

(1) m > n 个 n 维向量一定线性相关.
(2) 任意两个等价的线性无关向量组所含向量的个数相同.

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶C 线性相关和线性无关的性质
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推论和总结

(1) 向量组线性相关 ⇐⇒ 其中至少有一个向量可以由其它向量线性表示.

(2) 若 S 线性无关, S ∪ {β} 线性相关, 则 β 可以由 S 唯一线性表示.
(3) 部分相关 =⇒ 整体相关, 整体无关 =⇒ 部分无关.
(4) 高维相关 =⇒ 低维相关, 低维无关 =⇒ 高维无关.
(5) 多的由少的表示, 多的一定线性相关.

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶C 线性相关和线性无关的性质
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维数和秩

定义.

(1) 若 α1, . . . , αm 是线性空间 V 的一组基, 则称 m 为 V 的维数, 记作 dim V .
(2) 设向量组 S 生成空间 V . 称 V 的维数为该向量组的秩(Rank), 记作 R(S).

由前面的结论可知, V 不同的基向量组的个数总是相同的, 即维数是唯一的.

设 S = {α1, . . . , αm} 生成 V , T 是 V 的一组基. 由于向量组等价 ⇐⇒ 生成同一个
空间, 因此 S, T 是等价向量组. 由 T 线性无关可知 R(S) ⩽ m.

定理. 设 A = (α1, . . . , αm) 的列向量组为 S.

(1) S 线性无关 ⇐⇒ R(S) = m ⇐⇒ Ax = 0 只有零解.
(2) S 线性相关 ⇐⇒ R(S) < m ⇐⇒ Ax = 0 有非零解.

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶D 维数和秩
□□⊞□□□□⊞□□□□□□⊞□□□□□□□□□⊞□□□⊞□□□□ 25 / 105
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例: 方阵的列向量组

推论. 设方阵 A = (α1, . . . , αn) 的列向量组为 S.

(1) S 线性无关 ⇐⇒ R(S) = m ⇐⇒ Ax = 0 只有零解 ⇐⇒ |A| ̸= 0.
(2) S 线性相关 ⇐⇒ R(S) < m ⇐⇒ Ax = 0 有非零解 ⇐⇒ |A| = 0.

练习. 设 A 是 n 阶方阵, 且其行列式 |A| = 0. 下列说法正确的是(

C

).

A 必有一列元素全为零(A)
A 必有两列元素对应成比例(B)
A 必有一个列向量可由其余列向量线性表示(C)
A 中任意列向量均可由其余列向量线性表示(D)

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶D 维数和秩
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维数和秩

定理.

(1) 设向量组 S 可由向量组 T 线性表示, 则 R(S) ⩽ R(T ).
(2) 若线性空间 V ⊆ W , 则 dim V ⩽ dim W .
(3) 设向量组 S 可由向量组 T 线性表示, 且 R(S) = R(T ), 则 S, T 向量组等价.
(4) 若线性空间 V ⊆ W 且 dim V = dim W , 则 V = W .

我们来证明(4). 设 S, T 是 V, W 的一组基. 那么 S, T 大小相同, 且 S 可由 T 线性表
示. 设 S, T 分别是 A, B 的列向量组, 那么存在方阵 P 使得 A = BP . 若 P 不可逆, 存
在非零向量 x 使得 P x = 0. 于是 Ax = BP x = 0, S 线性相关, 矛盾!

定理. 设 V 是 n 维空间, S 是由其中向量构成向量组. 那么 S 是一组基当且仅当如下任
意两条满足 (剩下一条自动成立):

S 大小是 n;(1) S 生成 V ;(2) S 线性无关.(3)

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶D 维数和秩
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例: 向量组的秩

例. 若

S1 = {α1, α2, α3}, S2 = {α1, α2, α3, α4}, S3 = {α1, α2, α3, α4, α5}

满足 R(S1) = R(S2) = 3, R(S3) = 4. 证明向量组 S = {α1, α2, α3, α5 − α4} 线性无关.

证明. 由 R(S1) = 3 可知 S1 线性无关.

由 R(S2) = 3 可知 S2 线性相关. 从而 α4 可
由 S1 线性表示. 于是 S3 可由 S 线性表示. 显然 S 可由 S3 线性表示, 因此二者等价,
R(S) = R(S3) = 4.

练习. 判断题: 设 S 和 T 为两个 n 维向量组, 且 R(S) = R(T ), 则 S 和 T 等价.

×

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶D 维数和秩
□□⊞□□□□⊞□□□□□□⊞□□□□□□□□□⊞□□□⊞□□□□ 28 / 105
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极大线性无关组的定义

如何从一组能生成空间 V 的向量找到 V 的一组基?

我们只需要取极大线性无关组.

定义. 设 S 为一个向量组. 若 S 的部分组 S0 = {α1, . . . , αm} 满足
(1) S0 线性无关;
(2) S0 添加 S 中的若干向量得到的向量组均线性相关.
则称 S0 是 S 的一个极大线性无关组.

根据上一节相关结论可知, S 中所有向量均可由 S0 线性表示. 换言之, S0 和 S 等价,
它们生成相同的子空间 V , m = R(S), S0 是 V 的一组基.

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶E 极大线性无关组
□□⊞□□□□⊞□□□□□□⊞□□□□□□□□□⊞□□□⊞□□□□ 29 / 105
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(1) S0 线性无关;
(2) S0 添加 S 中的若干向量得到的向量组均线性相关.
则称 S0 是 S 的一个极大线性无关组.

根据上一节相关结论可知, S 中所有向量均可由 S0 线性表示.

换言之, S0 和 S 等价,
它们生成相同的子空间 V , m = R(S), S0 是 V 的一组基.

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶E 极大线性无关组
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(2) S 中任意 m + 1 个向量线性相关.

证明. 若 S0 是 S 的极大线性无关组, 则 S 中任意 m + 1 个向量可由 S0 线性表示.

从而
线性相关.
反之, 若 S 中任意 m + 1 个向量线性相关, 则 S 中任意 s > m 个向量线性相关. 于是

S0 添加 S 中的若干向量得到的向量组均线性相关.
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极大线性无关组的性质

(1) 若 R(S) = r, 则 S 中任意 r 个线性无关的向量构成 S 的一个极大线性无关组.

(2) 只含有零向量的向量组没有极大线性无关组 (空集), 它的秩为 0 (空集生成 0 维空间
{0}).

(3) 极大线性无关组一般不是唯一的.

例如

α1 = (1, 0)T, α2 = (0, 1)T, α3 = (1, 1)T.

α1, α2 是一个极大线性无关组, α1, α3 也是一个极大线性无关组.

(4) 向量组和它的一个极大线性无关组是等价的, 于是同一向量组的任意两个极大线性
无关组等价.

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶E 极大线性无关组
□□⊞□□□□⊞□□□□□□⊞□□□□□□□□□⊞□□□⊞□□□□ 31 / 105
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等价的向量组的极大线性无关组

设 A = (α1, . . . , αr), B = (β1, . . . , βr) 的列向量组是等价的线性无关组.

我们之前
证明过若 B = AP , 则 P 可逆.

一般地, 若 A = (α1, . . . , αm), B = (β1, . . . , βm) 的列向量组是等价的向量组, 秩为
r. 通过适当的列变换, 可以让 A 的前 r 列是极大无关组, 后面全是零向量. 设
A = (A′

r, O). 对 B 作类似操作, 则 A′ c∼ B′, 即存在可逆矩阵 P ∈ Mr 使得 B′ = A′P .
于是

B = A

(
P

E

)
c∼ A.

因此同型矩阵列 (行) 向量组等价 ⇐⇒ 列 (行) 等价.

线性代数 ▶第二章 等价和秩 ▶ 1 向量组 ▶E 极大线性无关组
□□⊞□□□□⊞□□□□□□⊞□□□□□□□□□⊞□□□⊞□□□□ 32 / 105
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例: 极大线性无关组

例. 矩阵 A =


1 1 3 1
0 1 −1 4
0 0 0 5
0 0 0 0

 的行向量组为
αT

1 = (1, 1, 3, 1), αT
2 = (0, 1, −1, 4), αT

3 = (0, 0, 0, 5), αT
4 = (0, 0, 0, 0).

由于 αT
1 , αT

2 , αT
3 的第 1, 2, 4 个分量形成可逆矩阵

1 1 1
0 1 4
0 0 5

, 因此它们线性无关. 它们

构成一个极大线性无关组, A 的行向量组的秩是 3. 类似可知, A 的列向量组的秩也是 3.

实际上, 任意矩阵的行向量组的秩等于列向量组的秩. 为了说明这一点, 我们考虑矩
阵的秩.
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第二节 矩阵的秩
矩阵秩的定义

矩阵秩的性质

极大线性无关组的计算方法



行秩、列秩与秩

我们知道, 每个矩阵 A 都等价于某个标准型
(

Er O
O O

)
.

称 r 为 A 的秩, 记作
R(A).

称 A 的行向量组的秩为行秩, 列向量组的秩为列秩.

定理 (行秩等于列秩等于秩). A 的行秩和列秩均等于秩 R(A).

由此可知矩阵的秩是唯一确定的.

对于行阶梯形矩阵, 再实施初等变换使其变为行最简形矩阵或标准型矩阵, 并不会改
变它的非零行的个数. 换言之, 行阶梯形矩阵的秩就是非零行的个数.

设 A 通过初等行变换变为行阶梯形矩阵 B, 则二者秩相等, 二者的行向量组等价, 从
而行秩也相等. 对于 B, 它的行秩就是非零行的个数, 也就是 R(B). 因此 A 的行秩等于
秩. 不难知道 R(A) = R(AT), 从而 A 的列秩 = AT 的行秩 = R(AT) = R(A).

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶A 矩阵秩的定义
⊞□□□□□□⊞□□□□□□□□□□□⊞□□□□□□□ 34 / 105
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称 A 的行向量组的秩为行秩, 列向量组的秩为列秩.

定理 (行秩等于列秩等于秩). A 的行秩和列秩均等于秩 R(A).

由此可知矩阵的秩是唯一确定的.

对于行阶梯形矩阵, 再实施初等变换使其变为行最简形矩阵或标准型矩阵, 并不会改
变它的非零行的个数. 换言之, 行阶梯形矩阵的秩就是非零行的个数.

设 A 通过初等行变换变为行阶梯形矩阵 B, 则二者秩相等, 二者的行向量组等价, 从
而行秩也相等. 对于 B, 它的行秩就是非零行的个数, 也就是 R(B).

因此 A 的行秩等于
秩. 不难知道 R(A) = R(AT), 从而 A 的列秩 = AT 的行秩 = R(AT) = R(A).

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶A 矩阵秩的定义
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行阶梯形矩阵的秩

例. 求矩阵 A =


2 −1 0 3 −2
0 3 1 −2 5
0 0 0 4 −3
0 0 0 0 0

 , B =

1 2 3
2 3 −5
4 7 1

 的秩.

解答. A 是行阶梯形矩阵, 因此 R(A) = 3.

B
r2 − 2r1∼
r3 − 4r1

1 2 3
0 −1 −11
0 −1 −11

 r3 − r2∼
−r2

1 2 3
0 1 11
0 0 0



=⇒ R(B) = 2.

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶A 矩阵秩的定义
⊞□□□□□□⊞□□□□□□□□□□□⊞□□□□□□□ 35 / 105



行阶梯形矩阵的秩

例. 求矩阵 A =


2 −1 0 3 −2
0 3 1 −2 5
0 0 0 4 −3
0 0 0 0 0

 , B =

1 2 3
2 3 −5
4 7 1

 的秩.

解答. A 是行阶梯形矩阵, 因此 R(A) = 3.

B
r2 − 2r1∼
r3 − 4r1

1 2 3
0 −1 −11
0 −1 −11

 r3 − r2∼
−r2

1 2 3
0 1 11
0 0 0



=⇒ R(B) = 2.

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶A 矩阵秩的定义
⊞□□□□□□⊞□□□□□□□□□□□⊞□□□□□□□ 35 / 105



行阶梯形矩阵的秩

例. 求矩阵 A =


2 −1 0 3 −2
0 3 1 −2 5
0 0 0 4 −3
0 0 0 0 0

 , B =

1 2 3
2 3 −5
4 7 1

 的秩.

解答. A 是行阶梯形矩阵, 因此 R(A) = 3.

B
r2 − 2r1∼
r3 − 4r1

1 2 3
0 −1 −11
0 −1 −11

 r3 − r2∼
−r2

1 2 3
0 1 11
0 0 0



=⇒ R(B) = 2.

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶A 矩阵秩的定义
⊞□□□□□□⊞□□□□□□□□□□□⊞□□□□□□□ 35 / 105



行阶梯形矩阵的秩

例. 求矩阵 A =


2 −1 0 3 −2
0 3 1 −2 5
0 0 0 4 −3
0 0 0 0 0

 , B =

1 2 3
2 3 −5
4 7 1

 的秩.

解答. A 是行阶梯形矩阵, 因此 R(A) = 3.

B
r2 − 2r1∼
r3 − 4r1

1 2 3
0 −1 −11
0 −1 −11

 r3 − r2∼
−r2

1 2 3
0 1 11
0 0 0

 =⇒ R(B) = 2.

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶A 矩阵秩的定义
⊞□□□□□□⊞□□□□□□□□□□□⊞□□□□□□□ 35 / 105



例: 计算矩阵的秩

例. 求矩阵 A =


1 1 a

−1 a − 1 1 − a
1 1 a2

1 1 2a + 1

 的秩.

解答.

A

r2 + r1
r3 − r1∼
r4 − r1


1 1 a
0 a 1
0 0 a2 − a
0 0 a + 1



r3 − ar4∼
−1

2r3


1 1 a
0 a 1
0 0 a
0 0 a + 1

 ∼


1 1 a
0 a 1
0 0 1
0 0 0


因此 a ̸= 0 时, R(A) = 3; a = 0 时, R(A) = 2.

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶A 矩阵秩的定义
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例: 计算矩阵的秩

注意处理带未知数的矩阵时, 不宜实施 1
a + 1

r2, (a − 2)r3 等类似操作, 因为其分母或
系数可能为零.

练习. 求矩阵 A =

1 1 −2 3
2 1 −6 4
3 2 m 7

 的秩.

答案. m ̸= −8 时, R(A) = 3; m = −8 时, R(A) = 2.

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶A 矩阵秩的定义
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例: 计算矩阵的秩

例. 求矩阵 A =


a 1 1 1
1 a 1 1
1 1 a 1
1 1 1 a

 的秩.

解答.

A

r1 ↔ r4
r2 − r1∼
r3 − r1
r4 − ar1


1 1 1 a
0 a − 1 0 1 − a
0 0 a − 1 1 − a
0 1 − a 1 − a 1 − a2



r4 + r2∼
r4 + r3


1 1 1 a
0 a − 1 0 1 − a
0 0 a − 1 1 − a
0 0 0 −(a + 3)(a − 1)


因此 a ̸= 1, −3 时, R(A) = 4; a = −3 时, R(A) = 3; a = 1 时, R(A) = 1.

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶A 矩阵秩的定义
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矩阵秩与子式

矩阵秩有另一种刻画方式.

矩阵 A 任取 k 行 k 列交叉得到的 k2 个元素 (不改变位
置次序) 形成的 k 阶方阵的行列式, 称为 A 的 k 阶子式. 例如 n 阶方阵的余子式是
n − 1 阶子式.

定理. 设 R(A) = r, 则存在非零的 r 阶子式, 但所有的 r + 1 阶子式都是零.

根据行列式的拉普拉斯展开, 若 A 的 k 阶子式均为零, 则 k + 1 阶子式也都是零. 因
此 A 的任意 s > r 阶子式都是零.

推论.

(1) R(A) ⩾ r ⇐⇒ A 存在非零 r 阶子式.
(2) R(A) ⩽ r ⇐⇒ A 所有 r + 1 阶子式均为零.
(3) R(A) = r =⇒ A 存在 1, 2, . . . , r 阶非零子式.

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶A 矩阵秩的定义
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矩阵秩的性质

证明. 设 B = P A, 其中 P 是初等矩阵.

(1) 若 P = E(i, j), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式, 最多相差 −1.
(2) 若 P = E(i(a)), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式或 a 倍.
(3) 若 P = E(i, j(a)), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式.
因此若 A 的 k 阶子式都是零, 则 B 的 k 阶子式也都是零.
由于 P −1也是初等矩阵,因此反过来也成立. 对于B = AP 情形同理. 因此,若A ∼ B,

则 A 的 k 阶子式都是零 ⇐⇒ B 的 k 阶子式都是零.
对于标准型矩阵, 该定理显然成立. 因此该定理对任意矩阵都成立.

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶A 矩阵秩的定义
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命题. 设 A ∈ Mm×n, 则 0 ⩽ R(A) ⩽ min(m, n).

定义.

(1) 若 R(A) = m, 称 A 行满秩;
(2) 若 R(A) = n, 称 A 列满秩;
(3) 若 R(A) = m = n, 称 A 满秩.
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矩阵秩的性质

命题.

(1) R(A) = 0 ⇐⇒ A = O;
(2) n 阶方阵 A 可逆 ⇐⇒ R(A) = n;
(3) R(kA) = R(A) = R(AT), k ̸= 0;
(4) A ∼ B ⇐⇒ R(A) = R(B);
(5) R(AB) ⩽ min

(
R(A), R(B)

)
;

(6) 若 Am×nBn×ℓ = O, 则 R(A) + R(B) ⩽ n;
(7) R(aA + bB) ⩽ R(A, B) ⩽ R(A) + R(B).
特别地, max

(
R(A), R(B)

)
⩽ R(A, B).
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矩阵秩的性质

命题.

(5) R(AB) ⩽ min
(
R(A), R(B)

)
.

证明. AB 的列向量为 A 列向量组的线性组合, 从而 AB 的列秩 ⩽ A 的列秩, 即
R(AB) ⩽ R(A).

于是

R(AB) = R(BTAT) ⩽ R(BT) = R(B).

若 B 行满秩, 则 B 有 R(B) 阶子式非零, 它对应的方阵右乘 A 得到的列向量组和
A 列向量组等价, 从而 R(AB) = R(A); 若 B 列满秩, 则 R(BA) = R(A);
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R(AB) ⩽ R(A). 于是

R(AB) = R(BTAT) ⩽ R(BT) = R(B).

若 B 行满秩, 则 B 有 R(B) 阶子式非零, 它对应的方阵右乘 A 得到的列向量组和
A 列向量组等价, 从而 R(AB) = R(A);

若 B 列满秩, 则 R(BA) = R(A);

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶B 矩阵秩的性质
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(6) 若 Am×nBn×ℓ = O, 则 R(A) + R(B) ⩽ n.

证明. 我们将会 §2.4 证明空间

V = {x ∈ Rn | Ax = 0}

的维数是 n − R(A).

设
W = {By | y ∈ Rℓ}

是 B 列向量生成的空间, 则 W 的维数是 R(B). 由 AB = O 可知 W ⊆ V , 因此
R(B) ⩽ n − R(A).
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矩阵秩的性质

命题.

(7) R(aA + bB) ⩽ R(A, B) ⩽ R(A) + R(B).
特别地, max

(
R(A), R(B)

)
⩽ R(A, B).

证明. 设 S, T 分别为 A, B 列向量组的极大线性无关组,

则 S, T 的大小分别是 R(A),
R(B). 由于 (A, B) 的列向量组和 S ∪ T 向量组等价, 因此

R(A, B) = R(S ∪ T ) ⩽ R(A) + R(B).

由于 aA + bB 的列向量组可以由 (A, B) 的列向量组线性表示, 因此

R(aA + bB) ⩽ R(A, B).
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矩阵秩的性质

另证. 由于添加零行或零列不改变秩, 因此不妨设 A, B 都是方阵.

由于

aA + bB = (A, B)
(

aE
bE

)
, (A, B) = (E, E)

(
A

B

)
.

因此 R(aA + bB) ⩽ R(A, B) ⩽ R(A) + R(B).
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矩阵秩性质的应用

练习.

(1) 设 R(A) = 2, B =

 1 0 2
0 2 0

−1 0 3

, 则 R(AB) =

2

.

(2) 若 A 是 n 阶方阵且 R(AB) < R(B), 则 |A| =

0

.

(3) 若 A =

1 0 2
0 1 1
2 0 5

 , B =

3 4 1
1 2 1
4 6 t

 , AX = B 且 R(X) = 2, 则 t =

2

.

(4) 若 A =

t 2 3
2 1 −1
0 0 5

 且存在非零矩阵 B 使得 AB = O, 则 t =

4

.

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶B 矩阵秩的性质
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(3) 若 A =

1 0 2
0 1 1
2 0 5

 , B =

3 4 1
1 2 1
4 6 t

 , AX = B 且 R(X) = 2, 则 t = 2 .

(4) 若 A =

t 2 3
2 1 −1
0 0 5

 且存在非零矩阵 B 使得 AB = O, 则 t =

4

.

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶B 矩阵秩的性质
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例: 矩阵秩性质的应用

例. 证明: 若 n 阶方阵 A 满足 A2 = A, 则 R(A) + R(A − E) = n.

证明. 由于 A(A − E) = A2 − A = O, 因此

R(A) + R(A − E) ⩽ n.

由于 A + (E − A) = E, 因此

n = R(E) ⩽ R(A) + R(E − A).

故 R(A) + R(A − E) = n.

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶B 矩阵秩的性质
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例: 矩阵秩性质的应用

定理 (伴随矩阵的秩). 设 A 是 n 阶方阵, 则

R(A∗) =


n, R(A) = n;
1, R(A) = n − 1;
0, R(A) ⩽ n − 2.

证明.

(1) 若 R(A) = n, A 可逆, 从而 A∗ 可逆, R(A∗) = n.
(2) 若 R(A) = n − 1, 由 AA∗ = |A|E = O 可知 R(A∗) ⩽ 1.

由于 R(A) = n − 1, A 存
在非零的 n − 1 子式, 从而 A∗ ̸= O. 故 R(A∗) = 1.

(3) 若 R(A) ⩽ n − 2, 则 A 的 n − 1 子式均为零, 从而 A∗ = O.
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例: 矩阵秩性质的应用

练习.

(1) 设 α = (1, 0, −1, 2)T, β = (0, 1, 0, 2)T, 则 R(αβT) =

1

.

(2) 若 A =

a b b
b a b
b b a

 且 R(A∗) = 1, 则(

B

).

a ̸= b, a + 2b ̸= 0(A) a ̸= b, a + 2b = 0(B)
a = b, a ̸= 0(C) a = b = 0(D)

(3) 设 A, B 均为 n 阶非零矩阵, 且 AB = O, 则 R(A) 与 R(B)(

B

).

必有一个等于 0(A) 都小于 n(B)
都等于 n(C) 一个小于 n, 一个等于 n(D)

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶B 矩阵秩的性质
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例: 矩阵秩性质的应用

练习.

(4) 设 P 为 3 阶非零矩阵, Q =

1 2 3
2 4 t
3 6 9

 且 P Q = O, 则(

A

).

t ̸= 6 时, R(P ) = 1(A) t ̸= 6 时, R(P ) = 2(B)
t = 6 时, R(P ) = 1(C) t = 6 时, R(P ) = 2(D)

(5) 设 A, B 为 n 阶方阵, 则(

A

).

R(A, AB) = R(A)(A) R(A, BA) = R(A)(B)

R(A, AB) = max
(
R(A), R(B)

)
(C) R(AB) = R(ATBT)(D)

答案. 存在 AB = O, BA ̸= O, D 错误. 令 A = E, C 错误. (E, B) 行满秩, 选 A.
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A

).

R(A, AB) = R(A)(A) R(A, BA) = R(A)(B)

R(A, AB) = max
(
R(A), R(B)

)
(C) R(AB) = R(ATBT)(D)

答案. 存在 AB = O, BA ̸= O, D 错误. 令 A = E, C 错误. (E, B) 行满秩, 选 A.

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶B 矩阵秩的性质
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例: 矩阵秩性质的应用

练习.
(6) 设 A ∈ Mm×n, B ∈ Mn×m, 则(

A

).

当 m > n 时, 必有 |AB| = 0(A) 当 m > n 时, 必有 |AB| ̸= 0(B)
当 m < n 时, 必有 |AB| = 0(C) 当 m < n 时, 必有 |AB| ̸= 0(D)

(7) 设 A ∈ Mn×m, B ∈ Mm×n, n < m. 若 AB = E, 则 R(B) =

n

.

(8) 若

1 1 1
0 1 −1
2 3 a + 2

 和
 1 2 2

2 1 1
a + 3 a + 6 a + 4

 等价, 则(

B

).

a = −1(A) a ̸= −1(B) a ̸= 1(C) a = 1(D)

(9) 设四阶方阵 A = (α1, α2, α3, α4) 满足 α1 + α2 − 2α3 = 0, α2 + 5α4 = 0, 则
R(A∗) =

0

.
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线性相关的不变性

定理. 若 A 经过初等行变换变为 B, 则

(1) A 的行向量组与 B 的行向量组等价;
(2) A 任意 k 列和 B 对应的 k 列具有相同的线性相关性.

即初等行变换保持行向量组的等价性, 列向量组的线性组合关系.

证明. (1)我们已经证明过.

设 B = P A, 其中 P 是可逆矩阵. 若 Bx = 0, 则 P Ax =
0, Ax = 0. 反之亦然, 即 Ax = 0 ⇐⇒ Bx = 0. 设

A = (α1, . . . , αm), B = (β1, . . . , βm).

则对于 x = (λ1, . . . , λm)T,

Ax = λ1α1 + · · · + λmαm = 0 ⇐⇒ Bx = λ1β1 + · · · + λmβm = 0.

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶C 极大线性无关组的计算方法
⊞□□□□□□⊞□□□□□□□□□□□⊞□□□□□□□ 53 / 105
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极大线性无关组和秩的计算方法
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典型例题: 求极大线性无关组

例. 求下述向量组的秩和一个极大无关组, 并把其余向量用这个极大无关组线性表示:

α1 =


−7
−2
1

−11

 , α2 =


1

−1
5
8

 , α3 =


3
1

−1
4

 , α4 =


5
3

−7
0

 , α5 =


−4
−2
1

−11

 .

解答.

A = (α1, α2, α3, α4, α5) =


−7 1 3 5 −4
−2 −1 1 3 −2
1 5 −1 −7 1

−11 8 4 0 −11



线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶C 极大线性无关组的计算方法
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典型例题: 求极大线性无关组

续解.

r1 ↔ r3∼


1 5 −1 −7 1

−2 −1 1 3 −2
−7 1 3 5 −4
−11 8 4 0 −11

 ∼


1 5 −1 −7 1
0 9 −1 −11 0
0 36 −4 −44 3
0 63 −7 −77 0



∼


1 5 −1 −7 1
0 9 −1 −11 0
0 0 0 0 3
0 0 0 0 0

 ∼


1 0 −4/9 −8/9 0
0 1 −1/9 −11/9 0
0 0 0 0 1
0 0 0 0 0


因此 R(A) = 3, α1, α2, α5 是一个极大线性无关组, 且

α3 = −4
9

α1 − 1
9

α2, α4 = −8
9

α1 − 11
9

α2.

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶C 极大线性无关组的计算方法
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典型例题: 求极大线性无关组

练习. 求下述矩阵列向量的一个极大无关组, 并把其余向量用这个极大无关组线性表示:

A =


2 −1 −1 1 2
1 1 −2 1 4
4 −6 2 −2 4
3 6 −9 7 9



r∼


1 0 −1 0 4
0 1 −1 0 3
0 0 0 1 −3
0 0 0 0 0



答案. 设 αj 是 A 的第 j 列, 则 α1, α2, α4 是一个极大线性无关组, 且

α3 = −α1 − α2, α5 = 4α1 + 3α2 − 3α4.

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶C 极大线性无关组的计算方法
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典型例题: 求极大线性无关组

例. 假设下述向量组线性相关

α1 = (1, 1, 1, 1, 2), α2 = (2, 1, 3, 2, 3), α3 = (2, 3, 3, 2, 3), α4 = (1, 3, −1, 1, a).

求 a, 并求它的秩和一个极大无关组, 并把其余向量用这个极大无关组线性表示.

解答.

A = (αT
1 , αT

2 , αT
3 , αT

4 ) r∼


1 0 0 5
0 1 0 −2
0 0 1 0
0 0 0 a − 4
0 0 0 0

 .

因此 a = 4, 秩为 3, α1, α2, α3 是一个极大线性无关组, 且 α4 = 5α1 − 2α2.

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶C 极大线性无关组的计算方法
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α1 = (1, 1, 1, 1, 2), α2 = (2, 1, 3, 2, 3), α3 = (2, 3, 3, 2, 3), α4 = (1, 3, −1, 1, a).

求 a, 并求它的秩和一个极大无关组, 并把其余向量用这个极大无关组线性表示.

解答.

A = (αT
1 , αT

2 , αT
3 , αT

4 ) r∼


1 0 0 5
0 1 0 −2
0 0 1 0
0 0 0 a − 4
0 0 0 0

 .

因此 a = 4, 秩为 3, α1, α2, α3 是一个极大线性无关组, 且 α4 = 5α1 − 2α2.

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶C 极大线性无关组的计算方法
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例: 线性相关与线性无关

练习.

(1) 设矩阵 A 经初等行变换化为 B, 则二者的(

A

).

行向量组等价, 列向量组同相关性(A)
行向量组同相关性, 列向量组等价(B)
行向量组未必等价, 列向量组同相关性(C)
行向量组等价, 列向量组未必同相关性(D)

(2) 设 A ∈ Mm×n, B ∈ Mn×k, AB = O, B ̸= O, 则(

A

).

A 的列向量组线性相关(A) A 的行向量组线性相关(B)
A 的列向量组线性无关(C) A 的行向量组线性无关(D)

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶C 极大线性无关组的计算方法
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例: 线性相关与线性无关

练习. 多选题: 设 A∗ 是 n > 1 阶方阵, 以下说法正确的是(

ABCD

).

若 A 的列向量组线性相关, 则 A∗ 的列向量组线性相关(A)
若 A 的列向量组线性无关, 则 A∗ 的列向量组线性无关(B)
若 A∗ 的某两列向量线性相关, 则 A 的列向量组线性相关(C)
若 A∗ 的某两列向量线性无关, 则 A 的列向量组线性无关(D)

线性代数 ▶第二章 等价和秩 ▶ 2 矩阵的秩 ▶C 极大线性无关组的计算方法
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第三节 标准正交基
向量的内积

正交向量组与格拉姆-施密特正交化



引例: 更好的基

本节考虑的向量都是实向量.

设向量组 S = {α1, . . . , αs} 的秩为 r, 则它们生成的线性空间 V 的维数就是 r. S 的
极大无关组 S0 的大小就是 r, 且 S0 是 V 的一组基.

有时候我们想更进一步, 就像 Rn 的基本向量组 e1, . . . , en 一样, 我们希望找到 V 的
一组基 α1, . . . , αr 使得

(1) αi 长度都是 1;
(2) α1, . . . , αr 两两垂直.

线性代数 ▶第二章 等价和秩 ▶ 3 标准正交基 ▶A 向量的内积
⊞□□□□⊞□□□□□ 61 / 105
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内积

定义. 设 α = (a1, . . . , an)T, β = (b1, . . . , bn)T ∈ Rn, 定义内积

[α, β] = αTβ = βTα = a1b1 + · · · + anbn ∈ R.

内积是数量积的推广, 它满足

(1) [α, β] = [β, α];
(2) [α, α] ⩾ 0. 当且仅当 α = 0 时, [α, α] = 0;
(3) [λα, β] = [α, λβ] = λ[α, β];
(4) [α + β, γ] = [α, γ] + [β, γ].

这说明内积是一个对称正定双线性型.

线性代数 ▶第二章 等价和秩 ▶ 3 标准正交基 ▶A 向量的内积
⊞□□□□⊞□□□□□ 62 / 105



内积

定义. 设 α = (a1, . . . , an)T, β = (b1, . . . , bn)T ∈ Rn, 定义内积

[α, β] = αTβ = βTα = a1b1 + · · · + anbn ∈ R.

内积是数量积的推广, 它满足

(1) [α, β] = [β, α];
(2) [α, α] ⩾ 0. 当且仅当 α = 0 时, [α, α] = 0;
(3) [λα, β] = [α, λβ] = λ[α, β];
(4) [α + β, γ] = [α, γ] + [β, γ].

这说明内积是一个对称正定双线性型.

线性代数 ▶第二章 等价和秩 ▶ 3 标准正交基 ▶A 向量的内积
⊞□□□□⊞□□□□□ 62 / 105



内积

定义. 设 α = (a1, . . . , an)T, β = (b1, . . . , bn)T ∈ Rn, 定义内积

[α, β] = αTβ = βTα = a1b1 + · · · + anbn ∈ R.

内积是数量积的推广, 它满足
(1) [α, β] = [β, α];

(2) [α, α] ⩾ 0. 当且仅当 α = 0 时, [α, α] = 0;
(3) [λα, β] = [α, λβ] = λ[α, β];
(4) [α + β, γ] = [α, γ] + [β, γ].

这说明内积是一个对称正定双线性型.

线性代数 ▶第二章 等价和秩 ▶ 3 标准正交基 ▶A 向量的内积
⊞□□□□⊞□□□□□ 62 / 105



内积

定义. 设 α = (a1, . . . , an)T, β = (b1, . . . , bn)T ∈ Rn, 定义内积

[α, β] = αTβ = βTα = a1b1 + · · · + anbn ∈ R.

内积是数量积的推广, 它满足
(1) [α, β] = [β, α];
(2) [α, α] ⩾ 0. 当且仅当 α = 0 时, [α, α] = 0;

(3) [λα, β] = [α, λβ] = λ[α, β];
(4) [α + β, γ] = [α, γ] + [β, γ].

这说明内积是一个对称正定双线性型.

线性代数 ▶第二章 等价和秩 ▶ 3 标准正交基 ▶A 向量的内积
⊞□□□□⊞□□□□□ 62 / 105



内积

定义. 设 α = (a1, . . . , an)T, β = (b1, . . . , bn)T ∈ Rn, 定义内积

[α, β] = αTβ = βTα = a1b1 + · · · + anbn ∈ R.

内积是数量积的推广, 它满足
(1) [α, β] = [β, α];
(2) [α, α] ⩾ 0. 当且仅当 α = 0 时, [α, α] = 0;
(3) [λα, β] = [α, λβ] = λ[α, β];

(4) [α + β, γ] = [α, γ] + [β, γ].

这说明内积是一个对称正定双线性型.

线性代数 ▶第二章 等价和秩 ▶ 3 标准正交基 ▶A 向量的内积
⊞□□□□⊞□□□□□ 62 / 105



内积

定义. 设 α = (a1, . . . , an)T, β = (b1, . . . , bn)T ∈ Rn, 定义内积

[α, β] = αTβ = βTα = a1b1 + · · · + anbn ∈ R.

内积是数量积的推广, 它满足
(1) [α, β] = [β, α];
(2) [α, α] ⩾ 0. 当且仅当 α = 0 时, [α, α] = 0;
(3) [λα, β] = [α, λβ] = λ[α, β];
(4) [α + β, γ] = [α, γ] + [β, γ].

这说明内积是一个对称正定双线性型.

线性代数 ▶第二章 等价和秩 ▶ 3 标准正交基 ▶A 向量的内积
⊞□□□□⊞□□□□□ 62 / 105



内积

定义. 设 α = (a1, . . . , an)T, β = (b1, . . . , bn)T ∈ Rn, 定义内积

[α, β] = αTβ = βTα = a1b1 + · · · + anbn ∈ R.

内积是数量积的推广, 它满足
(1) [α, β] = [β, α];
(2) [α, α] ⩾ 0. 当且仅当 α = 0 时, [α, α] = 0;
(3) [λα, β] = [α, λβ] = λ[α, β];
(4) [α + β, γ] = [α, γ] + [β, γ].

这说明内积是一个对称正定双线性型.

线性代数 ▶第二章 等价和秩 ▶ 3 标准正交基 ▶A 向量的内积
⊞□□□□⊞□□□□□ 62 / 105



长度

定义. 设 x = (x1, . . . , xn) ∈ Rn, 定义 x 的长度或模为

∥x∥ =
√

[x, x] =
√

x2
1 + · · · + x2

n.

当 ∥x∥ = 1 时, 称 x 为单位向量. 对于非零向量 x, x

∥x∥
为 x 的单位化向量.

我们有 x = 0 ⇐⇒ ∥x∥ = 0 ⇐⇒ [x, x] = 0.

定义. 若 [α, β] = 0, 称 α, β 正交(垂直).

线性代数 ▶第二章 等价和秩 ▶ 3 标准正交基 ▶A 向量的内积
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柯西-施瓦兹不等式 非考试内容

设 α ̸= 0.

那么 X 的二次多项式

∥Xα + β∥2 = [Xα + β, Xα + β] = [α, α]X2 + 2[α, β]X + [β, β] ⩾ 0

恒成立. 因此其判别式
∆ = 4([α, β]2 − ∥α∥2 · ∥β∥2) ⩽ 0,

于是我们得到柯西-施瓦兹不等式

±[α, β] ⩽ ∥α∥ · ∥β∥.

显然 α = 0 时它也成立.

线性代数 ▶第二章 等价和秩 ▶ 3 标准正交基 ▶A 向量的内积
⊞□□□□⊞□□□□□ 64 / 105



柯西-施瓦兹不等式 非考试内容

设 α ̸= 0. 那么 X 的二次多项式

∥Xα + β∥2 = [Xα + β, Xα + β] = [α, α]X2 + 2[α, β]X + [β, β] ⩾ 0

恒成立.

因此其判别式
∆ = 4([α, β]2 − ∥α∥2 · ∥β∥2) ⩽ 0,

于是我们得到柯西-施瓦兹不等式

±[α, β] ⩽ ∥α∥ · ∥β∥.

显然 α = 0 时它也成立.

线性代数 ▶第二章 等价和秩 ▶ 3 标准正交基 ▶A 向量的内积
⊞□□□□⊞□□□□□ 64 / 105



柯西-施瓦兹不等式 非考试内容

设 α ̸= 0. 那么 X 的二次多项式

∥Xα + β∥2 = [Xα + β, Xα + β] = [α, α]X2 + 2[α, β]X + [β, β] ⩾ 0

恒成立. 因此其判别式
∆ = 4([α, β]2 − ∥α∥2 · ∥β∥2) ⩽ 0,

于是我们得到柯西-施瓦兹不等式

±[α, β] ⩽ ∥α∥ · ∥β∥.

显然 α = 0 时它也成立.

线性代数 ▶第二章 等价和秩 ▶ 3 标准正交基 ▶A 向量的内积
⊞□□□□⊞□□□□□ 64 / 105



柯西-施瓦兹不等式 非考试内容

设 α ̸= 0. 那么 X 的二次多项式

∥Xα + β∥2 = [Xα + β, Xα + β] = [α, α]X2 + 2[α, β]X + [β, β] ⩾ 0

恒成立. 因此其判别式
∆ = 4([α, β]2 − ∥α∥2 · ∥β∥2) ⩽ 0,

于是我们得到柯西-施瓦兹不等式

±[α, β] ⩽ ∥α∥ · ∥β∥.

显然 α = 0 时它也成立.

线性代数 ▶第二章 等价和秩 ▶ 3 标准正交基 ▶A 向量的内积
⊞□□□□⊞□□□□□ 64 / 105



柯西-施瓦兹不等式 非考试内容

设 α ̸= 0. 那么 X 的二次多项式

∥Xα + β∥2 = [Xα + β, Xα + β] = [α, α]X2 + 2[α, β]X + [β, β] ⩾ 0

恒成立. 因此其判别式
∆ = 4([α, β]2 − ∥α∥2 · ∥β∥2) ⩽ 0,

于是我们得到柯西-施瓦兹不等式

±[α, β] ⩽ ∥α∥ · ∥β∥.

显然 α = 0 时它也成立.

线性代数 ▶第二章 等价和秩 ▶ 3 标准正交基 ▶A 向量的内积
⊞□□□□⊞□□□□□ 64 / 105



夹角

定义. 设非零向量 α = (a1, . . . , an)T, β = (b1, . . . , bn)T ∈ Rn, 定义 α, β 的夹角为

θ = arccos [α, β]
∥α∥ · ∥β∥

∈ [0, π].

注意正交比夹角为 π

2
略微广泛点, 因为零向量与任意向量正交.

若 α 与 β 正交, 则

∥α + β∥2 = ∥α∥2 + ∥β∥2 + 2[α, β] = ∥α∥2 + ∥β∥2,

此即勾股定理.

线性代数 ▶第二章 等价和秩 ▶ 3 标准正交基 ▶A 向量的内积
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例: 正交向量

定义.

(1) 若向量组 S 中的向量两两正交且非零, 则称 S 为正交向量组.
(2) 若向量组 S 中的向量两两正交且均为单位向量, 则称 S 为标准正交向量组.

例. 设 α1 = (1, 1, 1)T, α2 = (1, −2, 1)T ∈ R3. 求向量 α3 使得 α1, α2, α3 是正交向量组.

解答. 显然 α1, α2 正交.

设 α3 = (x1, x2, x3)T, 则

[α1, α3] = x1 + x2 + x3 = 0,

[α2, α3] = x1 − 2x2 + x3 = 0.

解得 (x1, x2, x3) = (k, 0, −k). 故可取 α3 = (1, 0, −1)T.

线性代数 ▶第二章 等价和秩 ▶ 3 标准正交基 ▶B 正交向量组与格拉姆-施密特正交化
⊞□□□□⊞□□□□□ 66 / 105
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正交向量组必线性无关

定理. 正交向量组必线性无关.

证明. 设 α1, . . . , αr 是正交向量组, λ1α1 + · · · + λrαr = 0.

对任意 1 ⩽ i ⩽ r,

0 = [0, αi] = [λ1α1 + · · · + λrαr, αi]

= λ1[α1, αi] + · · · + λr[αr, αi] = λi[αi, αi].

由于 αi 非零, [αi, αi] ̸= 0, λi = 0. 故 α1, . . . , αr 线性无关.

如果 α1, . . . , αr 是线性空间 V 的一组标准正交基, 则对任意 v ∈ V , 有

v =
r∑

i=1
[v, αi]αi.

线性代数 ▶第二章 等价和秩 ▶ 3 标准正交基 ▶B 正交向量组与格拉姆-施密特正交化
⊞□□□□⊞□□□□□ 67 / 105



正交向量组必线性无关

定理. 正交向量组必线性无关.

证明. 设 α1, . . . , αr 是正交向量组, λ1α1 + · · · + λrαr = 0.

对任意 1 ⩽ i ⩽ r,

0 = [0, αi] = [λ1α1 + · · · + λrαr, αi]

= λ1[α1, αi] + · · · + λr[αr, αi] = λi[αi, αi].

由于 αi 非零, [αi, αi] ̸= 0, λi = 0. 故 α1, . . . , αr 线性无关.

如果 α1, . . . , αr 是线性空间 V 的一组标准正交基, 则对任意 v ∈ V , 有

v =
r∑

i=1
[v, αi]αi.

线性代数 ▶第二章 等价和秩 ▶ 3 标准正交基 ▶B 正交向量组与格拉姆-施密特正交化
⊞□□□□⊞□□□□□ 67 / 105



正交向量组必线性无关

定理. 正交向量组必线性无关.

证明. 设 α1, . . . , αr 是正交向量组, λ1α1 + · · · + λrαr = 0. 对任意 1 ⩽ i ⩽ r,

0 = [0, αi] = [λ1α1 + · · · + λrαr, αi]

= λ1[α1, αi] + · · · + λr[αr, αi] = λi[αi, αi].

由于 αi 非零, [αi, αi] ̸= 0, λi = 0. 故 α1, . . . , αr 线性无关.

如果 α1, . . . , αr 是线性空间 V 的一组标准正交基, 则对任意 v ∈ V , 有

v =
r∑

i=1
[v, αi]αi.

线性代数 ▶第二章 等价和秩 ▶ 3 标准正交基 ▶B 正交向量组与格拉姆-施密特正交化
⊞□□□□⊞□□□□□ 67 / 105



正交向量组必线性无关

定理. 正交向量组必线性无关.

证明. 设 α1, . . . , αr 是正交向量组, λ1α1 + · · · + λrαr = 0. 对任意 1 ⩽ i ⩽ r,

0 = [0, αi] = [λ1α1 + · · · + λrαr, αi]
= λ1[α1, αi] + · · · + λr[αr, αi] = λi[αi, αi].

由于 αi 非零, [αi, αi] ̸= 0, λi = 0. 故 α1, . . . , αr 线性无关.

如果 α1, . . . , αr 是线性空间 V 的一组标准正交基, 则对任意 v ∈ V , 有

v =
r∑

i=1
[v, αi]αi.

线性代数 ▶第二章 等价和秩 ▶ 3 标准正交基 ▶B 正交向量组与格拉姆-施密特正交化
⊞□□□□⊞□□□□□ 67 / 105



正交向量组必线性无关

定理. 正交向量组必线性无关.

证明. 设 α1, . . . , αr 是正交向量组, λ1α1 + · · · + λrαr = 0. 对任意 1 ⩽ i ⩽ r,

0 = [0, αi] = [λ1α1 + · · · + λrαr, αi]
= λ1[α1, αi] + · · · + λr[αr, αi] = λi[αi, αi].

由于 αi 非零, [αi, αi] ̸= 0, λi = 0.

故 α1, . . . , αr 线性无关.

如果 α1, . . . , αr 是线性空间 V 的一组标准正交基, 则对任意 v ∈ V , 有

v =
r∑

i=1
[v, αi]αi.

线性代数 ▶第二章 等价和秩 ▶ 3 标准正交基 ▶B 正交向量组与格拉姆-施密特正交化
⊞□□□□⊞□□□□□ 67 / 105



正交向量组必线性无关

定理. 正交向量组必线性无关.

证明. 设 α1, . . . , αr 是正交向量组, λ1α1 + · · · + λrαr = 0. 对任意 1 ⩽ i ⩽ r,

0 = [0, αi] = [λ1α1 + · · · + λrαr, αi]
= λ1[α1, αi] + · · · + λr[αr, αi] = λi[αi, αi].

由于 αi 非零, [αi, αi] ̸= 0, λi = 0. 故 α1, . . . , αr 线性无关.

如果 α1, . . . , αr 是线性空间 V 的一组标准正交基, 则对任意 v ∈ V , 有

v =
r∑

i=1
[v, αi]αi.

线性代数 ▶第二章 等价和秩 ▶ 3 标准正交基 ▶B 正交向量组与格拉姆-施密特正交化
⊞□□□□⊞□□□□□ 67 / 105



正交向量组必线性无关

定理. 正交向量组必线性无关.

证明. 设 α1, . . . , αr 是正交向量组, λ1α1 + · · · + λrαr = 0. 对任意 1 ⩽ i ⩽ r,

0 = [0, αi] = [λ1α1 + · · · + λrαr, αi]
= λ1[α1, αi] + · · · + λr[αr, αi] = λi[αi, αi].

由于 αi 非零, [αi, αi] ̸= 0, λi = 0. 故 α1, . . . , αr 线性无关.

如果 α1, . . . , αr 是线性空间 V 的一组标准正交基, 则对任意 v ∈ V , 有

v =
r∑

i=1
[v, αi]αi.

线性代数 ▶第二章 等价和秩 ▶ 3 标准正交基 ▶B 正交向量组与格拉姆-施密特正交化
⊞□□□□⊞□□□□□ 67 / 105



正交阵

定义. 若实方阵 A 满足 ATA = E, 则称 A 为正交阵.

正交阵满足如下性质:

(1) A = (α1, . . . , αn) 是正交阵 ⇐⇒ α1, . . . , αn 是标准正交向量组.
(2) A 是正交阵 ⇐⇒ AT = A−1.
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正交化

现在我们来看如何从空间 V 的一组基 α1, . . . , αr 得到一组标准正交基.

令
β1 = α1, β2 = α2 + λβ1. 若 β1 和 β2 正交, 则

0 = [β2, β1] = [α2, β1] + λ[β1, β1],

因此 λ = − [α2, β1]
[β1, β1]

.

令 β3 = α3 + λ1β1 + λ2β2, 类似地, 若 β3 和 β1, β2 均正交, 则

λ1 = − [α3, β1]
[β1, β1]

, λ2 = − [α3, β2]
[β2, β2]

,

β3 = α3 − [α3, β1]
[β1, β1]

β1 − [α3, β2]
[β2, β2]

β2.

依次递推下去可得一组正交基.
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格拉姆-施密特正交化

格拉姆-施密特正交单位化方法.

β1 = α1

β2 = α2 − [α2, β1]
[β1, β1]

β1

β3 = α3 − [α3, β1]
[β1, β1]

β1 − [α3, β2]
[β2, β2]

β2

...

βr = αr − [αr, β1]
[β1, β1]

β1 − · · · − [αr, βr−1]
[βr−1, βr−1]

βr−1

则 e1 = β1
∥β1∥

, . . . , er = βr

∥βr∥
就是 V 的一组标准正交基.
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典型例题: 格拉姆-施密特正交化

例. 将 α1 = (1, 1, 0)T, α2 = (1, 0, 1)T, α3 = (1, 1, 2)T 正交单位化.

解答.

β1 = α1 = (1, 1, 0)T

β2 = α2 − [α2, β1]
[β1, β1]

β1 = (1, 0, 1)T − 1
2

(1, 1, 0)T = (1
2

, −1
2

, 1)T

β3 = α3 − [α3, β1]
[β1, β1]

β1 − [α3, β2]
[β2, β2]

β2 =(1, 1, 2)T − (1, 1, 0)T − 2
3/2

(1
2

, −1
2

, 1)T =(−2
3

,
2
3

,
2
3

)T

e1 = β1

∥β1∥
= 1√

2
(1, 1, 0)T, e2 = β2

∥β2∥
= 1√

6
(1, −1, 2)T, e3 = β3

∥β3∥
= 1√

3
(−1, 1, 1)T.
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第四节 线性方程组
齐次线性方程组解的存在性

齐次线性方程组解的结构

非齐次线性方程组

向量组的线性表示



线性方程组

线性方程组是指 
a11 x1 + a12 x2 + · · · + a1n xn = b1
a21 x1 + a22 x2 + · · · + a2n xn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm

它的系数形成了一个 m × n 矩阵 A, 称为系数矩阵.

线性方程组等价于
Ax = b,

其中
x = (x1, . . . , xn)T.

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶A 齐次线性方程组解的存在性
⊞□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□□□□□⊞□□ 72 / 105
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齐次线性方程组非零解的判定

当 b = 0 为零向量时, 称该线性方程组为齐次的; 否则称为非齐次的.

齐次线性方程
组总有解 x = 0. Ax = 0 有非零解 ⇐⇒ A 的列向量线性相关 ⇐⇒ R(A) < n.

定理.

(1) Am×nx = 0 有 (无穷多) 非零解 ⇐⇒ R(A) < n;
(2) Am×nx = 0 只有零解 ⇐⇒ R(A) = n.

推论. 设 A 是 n 阶方阵.

(1) Ax = 0 有 (无穷多) 非零解 ⇐⇒ |A| = 0;
(2) Ax = 0 只有零解 ⇐⇒ |A| ̸= 0.

推论. 若方程个数小于未知元个数, 则齐次线性方程组有非零解.

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶A 齐次线性方程组解的存在性
⊞□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□□□□□⊞□□ 73 / 105
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例: 齐次线性方程组非零解的判定

例. 假设 
x1 + 2x2 − 2x3 = 0

4x1 + ax2 + 3x3 = 0
3x1 − x2 + x3 = 0

有非零解, 求 a.

解答. 此时系数矩阵行列式为零:

0 =

∣∣∣∣∣∣∣
1 2 −2
4 a 3
3 −1 1

∣∣∣∣∣∣∣ = 7a + 21,

a = −3.

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶A 齐次线性方程组解的存在性
⊞□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□□□□□⊞□□ 74 / 105
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有非零解, 求 a.

解答. 此时系数矩阵行列式为零:

0 =

∣∣∣∣∣∣∣
1 2 −2
4 a 3
3 −1 1

∣∣∣∣∣∣∣ = 7a + 21, a = −3.
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例: 齐次线性方程组非零解的判定

例. 若下述方程有非零解, 求 a.
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1 1 a2

1 1 2a + 1
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r∼


1 1 a
0 a 1
0 0 1
0 0 0
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的秩小于 3, 因此 a = 0.
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基础解系

定义. 称空间 {x | Ax = 0} 的一组基为该齐次线性方程组的基础解系.

齐次线性方程组的解. 设 A ∈ Mm×n, R(A) = r. 线性方程组 Ax = 0 的基础解系包含
n − r 个向量.

证明. 通过交换未知元的位置 (相当于交换 A 列的位置), 不妨设 A 可化为行最简形

1 · · · 0 b11 · · · b1,n−r

... . . . ...
... . . . ...

0 · · · 1 br,1 · · · br,n−r

0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 0 · · · 0


=
(

Er B
O O

)
.

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶B 齐次线性方程组解的结构
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基础解系

续证. 方程化为 (Er, B)x = 0,

即x1
...

xr

 = −B

xr+1
...

xn

 , x =
(

−B
En−r

)xr+1
...

xn

 .

于是 C :=
(

−B
En−r

)
的 n − r 个列向量生成了整个解空间. 由于 R(C) ⩾ R(En−r) = n − r,

C 列满秩, 因此它的列向量就是一组基础解系.

推论. Ax = 0 任意 n − r 个线性无关的解都是一组基础解系.

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶B 齐次线性方程组解的结构
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求基础解系的步骤

齐次线性方程组的解法.

(1) 将系数矩阵通过初等行变换化为行最简形.
(2) 将矩阵重新写成方程形式 xi + · · · = 0.
(3) 移项, 使得等式左侧只有阶梯拐角列 i 对应的 xi = · · · .
(4) 添加 n − r 项 xj = xj, 使得等式左边凑成 x.
(5) 等式右侧是非拐角列 j 对应的 xj 的组合, 其系数形成的 n − r 个向量就是基础解系.

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶B 齐次线性方程组解的结构
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典型例题: 求基础解系

例. 解方程


x1 + 2x2 + 4x3 + x4 = 0

2x1 + 4x2 − 2x3 − x4 = 0
3x1 + 6x2 + 2x3 = 0

.

解答. 1 2 4 1
2 4 −2 −1
3 6 2 0

 r∼

1 2 4 1
0 0 −10 3
0 0 −10 3

 r∼

1 2 0 −1/5
0 0 1 3/10
0 0 0 0

 ,

=⇒
{

x1 + 2x2 − 1/5x4 = 0
x3 + 3/10x4 = 0

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶B 齐次线性方程组解的结构
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x1 + 2x2 + 4x3 + x4 = 0

2x1 + 4x2 − 2x3 − x4 = 0
3x1 + 6x2 + 2x3 = 0

.

解答. 1 2 4 1
2 4 −2 −1
3 6 2 0

 r∼

1 2 4 1
0 0 −10 3
0 0 −10 3

 r∼

1 2 0 −1/5
0 0 1 3/10
0 0 0 0

 ,

=⇒
{

x1 + 2x2 − 1/5x4 = 0
x3 + 3/10x4 = 0
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典型例题: 求基础解系

续解. 将 x1, x3 保留在等式左侧, 其它项移动到等式右边, 并添加 x2 = x2, x4 = x4, 得到
x1 = − 2x2 + 1/5x4
x2 = x2
x3 = − 3/10x4
x4 = x4

=⇒


x1
x2
x3
x4

 = x2


−2
1
0
0

+ x4


1/5
0

−3/10
1

 ,

通解为 
x1
x2
x3
x4

 = k1


−2
1
0
0

+ k2


1/5
0

−3/10
1

 , k1, k2为任意常数.
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典型例题: 求基础解系

练习. 解方程 Ax = 0, 其中 A =


1 2 1 1 1
2 4 3 1 1

−1 −2 1 3 −3
0 0 2 5 −2

.

答案.

A
r∼


1 2 0 0 2
0 0 1 0 −1
0 0 0 1 0
0 0 0 0 0

=⇒



x1 = −2x2 − 2x5
x2 = x2
x3 = x5
x4 = x4
x5 = x5

=⇒


x1
x2
x3
x4
x5

 = k1


−2
1
0
0
0

+ k2


−2
0
1
0
1

 .
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例: 基础解系

例. 设 A ∈ Mm×n, R(A) = n − 3, ξ1, ξ2, ξ3 为 Ax = 0 的三个线性无关的解. 则(

B

)是
该方程的一组基础解系.

ξ1, −ξ2, ξ2 − ξ3, ξ3 − ξ1(A) ξ1, ξ1 + ξ2, ξ1 + ξ2 + ξ3(B)
ξ1, ξ2(C) ξ1, ξ1 − ξ2 − ξ3, ξ1 + ξ2 + ξ3(D)

练习. 设 ξ1, ξ2, ξ3 是 Ax = 0 的一组基础解系, 则(

D

)也是该方程的一组基础解系.

与 ξ1, ξ2, ξ3 等价的一组向量(A) 与 ξ1, ξ2, ξ3 同秩的一组向量(B)
ξ1 − ξ2, ξ2 − ξ3, ξ3 − ξ1(C) ξ1 + ξ2, ξ2 + ξ3, ξ3 + ξ1(D)

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶B 齐次线性方程组解的结构
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例: 基础解系的应用

例. 设 A 是 n 阶方阵, R(A) = n − 1 且每行元素之和为 0. 则齐次线性方程组 Ax = 0 的
解为

k(1, 1, . . . , 1)T, k 为任意常数

.

例. 设 n 阶方阵 A 列向量的一个极大线性无关组为 α1, . . . , αn−1. 则 A∗x = 0 的解
为

k1α1 + · · · + kn−1αn−1, k1, . . . , kn−1 为任意常数

.

练习. 设 n 阶方阵 A 满足 R(A) = n − 1, 代数余子式 A11 ̸= 0. 则 Ax = 0 的解
为

k(A11, . . . , A1n)T, k 为任意常数

.

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶B 齐次线性方程组解的结构
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例: 基础解系

例. 设 Am×nBn×s = O, 证明 R(A) + R(B) ⩽ n.

证明. 由于 B 的列向量都是 Ax = 0 的解, 因此 R(B) 不超过该方程解空间的维数, 即
n − R(A).

例. 设 A 是实矩阵, 证明 R(ATA) = R(A).

证明. 若 ATAx = 0, 则 0 = xTATAx = (Ax)TAx = [Ax, Ax].

由内积的正定性可知
Ax = 0. 所以 ATAx = 0 ⇐⇒ Ax = 0. 二者解空间维数相等. 由于二者列数相同, 因此
二者秩相同.

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶B 齐次线性方程组解的结构
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例: 基础解系

由此可知
R(AAT) = R(AT) = R(A) = R(ATA),

R(A) = R(ATA) = R(ATAATA) = · · ·
由于

R(A) ⩾ R(AATA) ⩾ R(ATAATA),
因此这些矩阵的秩都相等. 类似地, 任意多个 A, AT 交错相乘得到的矩阵秩也都等于
R(A).
注意, 对于复矩阵这并不成立, 例如

A =
(

1
i

)
, ATA = 0.

此时有 R
(
A

T
A
)

= R(A), 其中 A 表示所有元素取共轭.
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例: 基础解系

例. 若 A = (α1, α2, α3, α4, α5) 且 Ax = 0 的解为 k1(1, 0, −1, 0, 1)T + k2(1, 0, 0, 1, −1)T,
则 A 列向量组的一个极大无关组是(

D

).

α1, α3, α5(A) α1, α3, α4(B) α3, α4, α5(C) α2, α3, α5(D)

练习. 若 A =

a 1 a2

1 a 1
1 1 a

 且存在 3 阶非零矩阵 B 使得 AB = O, 则(

A

).

a = 1, |B| = 0(A) a = −2, |B| = 0(B)
a = 1, |B| ̸= 0(C) a = −2, |B| ̸= 0(D)
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非齐次线性方程组解的存在性

设 A ∈ Mm×n.

对于非齐次线性方程组 Ax = b, 若方程有解, 则 b 可以由 A 的列向
量线性表示, 从而 A 的列向量组和 (A, b) 的列向量组等价. 因此 R(A) = R(A, b). 我们
称 m × (n + 1) 矩阵 (A, b) 为增广矩阵.

注意到 A 列向量生成的空间 V 是 (A, b) 列向量生成的空间 W 的子空间. 若
R(A) = R(A, b), 则 V = W , A 列向量组的一个极大无关组 S 也是 (A, b) 的极大无关
组. 从而 b 是 S 的线性组合, 也是 A 列向量的线性组合.

定理. Ax = b 有解 ⇐⇒ R(A) = R(A, b).

推论. 若 R(Am×n) = m, 则 Ax = b 总有解.

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶C 非齐次线性方程组
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非齐次线性方程组解的结构

若非齐次线性方程组 Ax = b 有解 x = x0, 则 A(x − x0) = 0.

从而 x − x0 是
Ax = b 的解. 设 ξ1, . . . , ξn−r 为 Ax = 0 的一组基础解系, 则 Ax = 0 的通解为

x = x0 + k1ξ1 + · · · + kn−rξn−r,

k1, . . . , kn−r 为任意常数.

线性方程组解的判定准则.

(1) 若 R(A) < R(A, b), 则 Ax = b 无解;
(2) 若 R(A) = R(A, b) = n, 则 Ax = b 有唯一解;
(3) 若 R(A) = R(A, b) < n, 则 Ax = b 有无穷多解.

推论. 若 A 是 n 阶方阵, 则 Ax = b 有唯一解 ⇐⇒ |A| ̸= 0.

若 |A| = 0, 则 Ax = b 无解或有无穷多解.
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求解非齐次线性方程组的步骤

非齐次线性方程组的解法.

(1) 写: 写出方程组对应的增广矩阵 (A, b);
(2) 变: 通过初等行变换将其化为行最简形;
(3) 判: 通过行最简形判定方程是否有解;
(4) 解: 若系数矩阵部分零行对应的常数项均为零, 则方程有解.
(5) 类似于齐次情形, 将矩阵重新写成方程形式、移项、添恒等式, 使得等式左边凑成 x.
(6) 等式右侧的常数部分是特解，其余是非拐角列 j 对应的 xj 的组合, 其系数形成的

n − r 个向量就是基础解系.

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶C 非齐次线性方程组
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(3) 判: 通过行最简形判定方程是否有解;

(4) 解: 若系数矩阵部分零行对应的常数项均为零, 则方程有解.
(5) 类似于齐次情形, 将矩阵重新写成方程形式、移项、添恒等式, 使得等式左边凑成 x.
(6) 等式右侧的常数部分是特解，其余是非拐角列 j 对应的 xj 的组合, 其系数形成的

n − r 个向量就是基础解系.

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶C 非齐次线性方程组
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典型例题: 解非齐次线性方程组

例. 解方程


x1 + 2x2 + 3x3 + 4x4 = 1

2x1 − x2 + 2x3 − 2x4 = 3
3x1 + x2 + 5x3 + 2x4 = 2

解答.1 2 3 4 1
2 −1 2 −2 3
3 1 5 2 2

 r∼

1 2 3 4 1
0 −5 −4 −10 1
0 −5 −4 −10 −1

 r∼

1 2 3 4 1
0 −5 −4 −10 1
0 0 0 0 1

.

于是 R(A) = 2 < R(A, b) = 3, 无解.
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0 0 0 0 0

.

于是 R(A) = 2 = R(A, b) = 2, 有解.
x1 = x2 + x4 + 1/2
x2 = x2
x3 = 2x4 + 1/2
x4 = x4
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2
1

 , k1, k2 ∈ R.
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典型例题: 解非齐次线性方程组

例. 已知

α1 = (1, 4, 0, 2)T, α2 = (2, 7, 1, 3)T, α3 = (0, 1, −1, a)T, β = (3, 10, b, 4)T.

问 a, b 为何值时,

(1) β 不能由 α1, α2, α3 线性表示;
(2) β 能由 α1, α2, α3 唯一线性表示;
(3) β 能由 α1, α2, α3 不唯一线性表示.

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶C 非齐次线性方程组
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典型例题: 线性方程组的性质

解答. 即问 Ax = β 的解的情况, 其中 A = (α1, α2, α3).

(A, β) =


1 2 0 3
4 7 1 10
0 1 −1 b
2 3 a 4

 r∼


1 2 0 3
0 −1 1 −2
0 1 −1 b
0 −1 a −2

 r∼


1 2 0 3
0 1 −1 2
0 0 a − 1 0
0 0 0 b − 2


于是可知 R(A) 和 R(A, β), 故

(1) b ̸= 2 时, β 不能由 α1, α2, α3 线性表示;
(2) a ̸= 1, b = 2 时, β 能由 α1, α2, α3 唯一线性表示;
(3) a = 1, b = 2 时, β 能由 α1, α2, α3 不唯一线性表示.

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶C 非齐次线性方程组
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例: 线性方程组解的性质

例. 设 A ∈ Mm×n, 则(

D

).

若 Ax = 0 仅有零解, 则 Ax = b 有唯一解(A)
若 Ax = 0 有非零解, 则 Ax = b 有无穷多解(B)
若 Ax = b 有无穷多解, 则 Ax = 0 只有零解(C)
若 Ax = b 有无穷多解, 则 Ax = 0 有非零解(D)

练习. 设 A ∈ Mm×n, R(A) = m < n, 则(

C

).

A 的任意 m 个列向量线性无关(A) A 的任意一个 m 阶子式不等于 0(B)

Ax = b 一定有无穷多个解(C) A
r∼ (E, O)(D)

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶C 非齐次线性方程组
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典型例题: 解非齐次线性方程组

例. a 为何值时, 以下方程 (1) 有唯一解; (2) 无解; (3) 有无穷多解? 并在有无穷多解时
求其通解. 

(1 + a)x1 + x2 + x3 = 0
x1 + (1 + a)x2 + x3 = 3
x1 + x2 + (1 + a)x3 = a

和之前求带参数矩阵的秩类似, 此处不宜实施常数不确定是否非零的第二类初等变
换 1

a + 1
r2, (a − 2)r3 等.

解答.

(A, b) =

1 + a 1 1 0
1 1 + a 1 3
1 1 1 + a a

 r∼

1 1 + a 1 3
0 −a a a − 3
0 a a2 + 2a a2 + a



线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶C 非齐次线性方程组
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典型例题: 解非齐次线性方程组

续解.

r∼

1 1 + a 1 3
0 a −a 3 − a

0 0 a2 + 3a a2 + 2a − 3

.

(1) 若 a ̸= 0, −3, 则 R(A) = R(A, b) = 3, 方程有唯一解.

(2) 若 a = 0, 则 (A, b) r∼

1 1 1 3
0 0 0 3
0 0 0 0

, R(A) = 1 < R(A, b) = 2, 方程无解.

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶C 非齐次线性方程组
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典型例题: 解非齐次线性方程组

续解.

(3) 若 a = −3, 则 (A, b) r∼

1 0 −1 −1
0 1 −1 −2
0 0 0 0

, R(A) = R(A, b) = 2, 方程有无穷多解.

特

解为

−1
−2
0

, 基础解系为

1
1
1

, 通解为

x =

−1
−2
0

+ k

1
1
1

 ,

k 为任意常数.

由于系数矩阵为 3 阶方阵, 也可以先通过 |A| ̸= 0 得到唯一解情形.

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶C 非齐次线性方程组
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典型例题: 解非齐次线性方程组

练习. a, b 为何值时, 以下方程
(1) 有唯一解; (2) 无解; (3) 有无穷多解? 并在有无穷多解时求其通解.

x1 + x2 + x3 + x4 = 1
x2 − x3 + 2 x4 = 1

2x1 + 3x2 + (a + 2)x3 + 4 x4 = b + 3
3x1 + 5x2 + x3 + (a + 8)x4 = 5

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶C 非齐次线性方程组
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典型例题: 解非齐次线性方程组

答案. 
1 1 1 1 1
0 1 −1 2 1
2 3 a + 2 4 b + 3
3 5 1 a + 8 5

 r∼


1 0 2 −1 0
0 1 −1 2 1
0 0 a + 1 0 b
0 0 0 a + 1 0

.

(1) a ̸= −1 时有唯一解;
(2) a = −1, b ̸= 0 时无解;
(3) a = −1, b = 0 时有无穷多解, 通解为

x =


0
1
0
0

+ k1


−2
1
1
0

+ k2


1

−2
0
1

 .

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶C 非齐次线性方程组
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典型例题: 解非齐次线性方程组

答案. 
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2 3 a + 2 4 b + 3
3 5 1 a + 8 5

 r∼


1 0 2 −1 0
0 1 −1 2 1
0 0 a + 1 0 b
0 0 0 a + 1 0

.

(1) a ̸= −1 时有唯一解;

(2) a = −1, b ̸= 0 时无解;
(3) a = −1, b = 0 时有无穷多解, 通解为

x =


0
1
0
0

+ k1


−2
1
1
0

+ k2


1

−2
0
1

 .

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶C 非齐次线性方程组
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例: 线性方程组解的性质

例. 设四元非齐次线性方程组 Ax = b 的系数矩阵 A 的秩为 3. 已知 η1, η2, η3 是它的三
个解向量, 且

η1 = (2, 3, 4, 5)T, η2 + η3 = (1, 2, 3, 4)T.

求 Ax = b 的通解.

解答. 由于 R(A) = 3, 因此 Ax = 0 的基础解系只包含一个向量.

根据解的性质,

2η1 − (η2 + η3) = (3, 4, 5, 6)T

是 Ax = 0 的一个解, 因此这是它的一个基础解系. 故 Ax = b 的通解为

x = η1 + k(3, 4, 5, 6)T = (2, 3, 4, 5)T + k(3, 4, 5, 6)T.

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶C 非齐次线性方程组
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例: 线性方程组解的性质

例. 已知 4 阶方阵 A = (α1, α2, α3, α4), 且 α2, α3, α4 线性无关, α1 = 2α2 − α3. 若
β = α1 + α2 + α3 + α4, 求 Ax = β 的通解.

解答. 由题设可知 R(A) = 3, 因此 Ax = 0 的基础解系只包含一个向量.

由 α1 =
2α2 − α3 可知 (1, −2, 1, 0)T 是 Ax = 0 的一个解, 因此这是它的一个基础解系. 注意到
(1, 1, 1, 1)T 是 Ax = b 的一个特解, 故通解为

x = (1, 1, 1, 1)T + k(1, −2, 1, 0)T.

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶C 非齐次线性方程组
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例: 线性方程组解的性质

例. 已知 β1, β2 是 Ax = b 的两个不同的解, α1, α2 是 Ax = 0 的基础解系, 则 Ax = b
的通解为(

B

), k1, k2 为任意常数.

β1 − β2
2

+ k1α1 + k2(α1 + α2)(A) 2β1 − β2 + k1α1 + k2(α1 − α2)(B)

β1 + β2
2

+ k1α1 + k2(β1 − β2)(C) β1 − β2
2

+ k1α1 + k2(β1 − β2)(D)

练习. 已知 η1 = (0, 1, 0)T, η2 = (−3, 2, 2)T 是线性方程组


x1 − x2 + 2x3 =−1

3x1 + x2 + 4x3 = 1
ax1 + bx2 + cx3 = d

的两个

解向量, 则该方程组的通解为

(0, 1, 0)T + k(−3, 1, 2)T

.

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶C 非齐次线性方程组
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向量组的线性表示

若 B 的列向量可由 A 的列向量组线性表示, 则 (A, B) 的列向量组和 A 的列向量
组等价,

因此 R(A) = R(A, B).

注意到 A 列向量生成的空间 V 是 (A, B) 列向量生成的空间 W 的子空间. 若
R(A) = R(A, b), 则 A 列向量组的一个极大无关组 S 也是 (A, B) 的极大无关组. 从而
B 的列向量都是 S 的线性组合, 也是 A 列向量的线性组合.

定理.

(1) B 的列向量组可由 A 的列向量组线性表示 ⇐⇒ AX = B 有解
⇐⇒ R(A) = R(A, B).

(2) B 的列向量组和 A 的列向量组等价 ⇐⇒ R(A) = R(A, B) = R(B).

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶D 向量组的线性表示
⊞□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□□□□□⊞□□ 103 / 105
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例: 向量组等价

例. 证明向量组 α1, α2 与 β1, β2, β3 等价, 其中

α1 =


1

−1
1

−1

 , α2 =


3
1
1
3

 , β1 =


2
0
1
1

 , β2 =


1
1
0
2

 , β3 =


3

−1
2
0

 .

证明.

(α1, α2, β1, β2, β3) =


1 3 2 1 3

−1 1 − 1 −1
1 1 1 0 2

−1 3 1 2 0

 r∼


1 3 2 1 3
0 2 1 1 1
0 0 0 0 0
0 0 0 0 0

.

因此 R(α1, α2, β1, β2, β3) = R(α1, α2) = R(β1, β2, β3) = 2.
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线性方程组的应用: 最小二乘法 非考试内容

在物理实验中, 经常会出现实验数据与预期不符的情况.

例如变量 y 应当为变量
x = (x1, . . . , xn)T 的线性组合, 即存在 n 维向量 β 使得 y = xTβ. 但从实验数据解方程
却是无解. 因此我们需要寻找参数 β 使得 y = xTβ 尽可能接近实验数据.

比较常见的是最小二乘法: 即寻找参数 β 使得
k∑

i=1
|yi − xT

i β|2 = ∥y − Aβ∥2

尽可能小, 其中 (xi, yi) 是实验数据, y = (y1, . . . , yk)T, A 是由行向量 xT
i 构成的 k × n

矩阵. 注意所有向量 Aβ 形成一个向量空间 V , 也就是 A 的列向量生成的空间. y 距离
这个空间的距离 ∥y − Aβ∥ 达到最小时, y − Aβ 应当和这个空间正交. 于是
AT(y − Aβ) = 0, 即 β 是方程

ATAβ = ATy

的解.

线性代数 ▶第二章 等价和秩 ▶ 4 线性方程组 ▶D 向量组的线性表示
⊞□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□□□□□⊞□□ 105 / 105
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