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001 班 (交通工、新能源) 课程信息

• 课时: 共 10 周 40 课时, 从 2026-03-03 到 2026-05-07
• 期末考试在课程结束后两周左右

001 班 QQ 群: 1054817276
入群答案 1400071B

教材: 高等教育出版社
唐烁, 朱士信《线性代数》
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003 班 (会计、信管) 课程信息

• 课时: 共 10 周 40 课时, 从 2026-03-03 到 2026-05-07
• 期末考试在课程结束后两周左右

003 班 QQ 群: 1078900814
入群答案 1400071B

教材: 高等教育出版社
唐烁, 朱士信《线性代数》
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成绩构成

期末考试 50 分
期末卷面需要达到 45 分
才计算总评分数, 45 分以
下直接不及格.

课堂测验 25 分
课堂测验共 3 次, 取最高
的两次平均. 测验范围和
时间会提前通知. 测验时
在教室内作答，否则按未
考处理.

作业 15 分
作业为配套练习册，通过
超星提交, 约两周交一次.
作业必须按时提交, 不允
许补交.

其它 10 分
完成超星各个章节的任务
点和主观研讨题.

线性代数
□□□□□□ 3 / 166



线性代数的意义

线性代数是一门利用代数方法研究线性方程、线性空间、线性变换等线性结构的课
程.

线性代数通过从具体的、几何化的观念出发, 抽象出一套代数化的方法, 从而避免了
高维情形缺乏几何直观的问题. 如同微积分中“以直代曲”思想引出导数、切线、积分等
一系列概念, 线性代数利用“以直代曲”思想将许多非线性问题的处理转化为线性问题,
非线性模型近似为线性模型等.

这些内容在统计学、密码学、运筹学、物理学、工程学、管理学、信息学、计算机科
学等很多领域有着广泛的应用. 我们不在此处逐一列举, 在之后的授课中我们会见到它的
各种应用.
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课程内容关系

标准线性空间 线性映射 矩阵 矩阵的运算

向量 行列式 伴随和逆

向量组 向量组的秩 极大无关组 相抵: 秩 应用: 线性方程组

子空间 维数 基

相似: 特征值与特征向量 相合: 实二次型
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课程学习方法

核心
理解抽象概念
掌握计算方法

课前
预习课本

课上
认真听课
记好笔记

课后
过一遍教材
与课上知识点

作业
检测学
习效果
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第一章 向量和矩阵
1 向量和矩阵的定义

2 矩阵的线性运算、乘法和转置

3 方阵的行列式

4 逆矩阵

5 分块矩阵

6 矩阵的初等变换



第一节 向量和矩阵的定义
向量和向量空间

线性映射

矩阵



平面向量和立体向量 非考试内容

我们在高中学习过向量的概念.

在平面上建立一个直角坐标系. 对于平面上的点 A,
连接 OA 的有向线段就是一个向量. 它可以用 u = (x, y) 来表示.

由于向量和平面上的点是一一对应的, 因此我们可以用 R2 来表示平面上所有向量形
成的集合. 在这个集合中有一个特殊的元素, 叫作零向量:

0 = (0, 0),

而且我们可以定义加法和数乘:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2), λ(x, y) = (λx, λy), λ ∈ R.

类似地, 立体空间中的所有向量形成集合 R3. 在这个集合中也有零向量、加法和数
乘.

线性代数 ▶第一章 向量和矩阵 ▶ 1 向量和矩阵的定义 ▶A 向量和向量空间
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平面向量和立体向量的性质 非考试内容

我们总使用粗小写字母 α, β, γ, x, y, . . . 表示向量.

R2 或 R3 上的零向量、加法和数乘满足:

(V1) α + β = β + α;

(V2) α + (β + γ) = (α + β) + γ;

(V3) 0 + α = α;

(V4) 对任意 α, 存在 β 使得 α + β = 0. 称 β 为 α 的负向量;

(V5) (λµ)α = λ(µα);

(V6) (λ + µ)α = λα + µα;

(V7) λ(α + β) = λα + λβ;

(V8) 1 ·α = α.

线性代数 ▶第一章 向量和矩阵 ▶ 1 向量和矩阵的定义 ▶A 向量和向量空间
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(V3) 0 + α = α;

(V4) 对任意 α, 存在 β 使得 α + β = 0. 称 β 为 α 的负向量;

(V5) (λµ)α = λ(µα);

(V6) (λ + µ)α = λα + µα;

(V7) λ(α + β) = λα + λβ;

(V8) 1 ·α = α.

线性代数 ▶第一章 向量和矩阵 ▶ 1 向量和矩阵的定义 ▶A 向量和向量空间
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向量的定义

将上述概念稍作推广, 我们可以得到具有 n 个分量的向量

x = (x1, x2, . . . , xn),

称为 n 维行向量.

出于后续描述的统一性, 我们将向量的分量写成一列而不是一行, 从而
得到 n 维列向量:

x =


x1
x2
...

xn

 .

之后凡是提到向量, 均是指列向量. 为了书写方便, 也可以把列向量写成

x = (x1, x2, . . . , xn)T.

其中 T 表示转置(Transpose), 它是将行列关系对换的一种操作.

线性代数 ▶第一章 向量和矩阵 ▶ 1 向量和矩阵的定义 ▶A 向量和向量空间
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标准向量空间 非考试内容

将全体 n 维列向量记为 Rn.

在这个集合中可类似定义零向量、加法和数乘:

(1) 0 = (0, . . . , 0)T;
(2) (a1, . . . , an)T + (b1, . . . , bn)T = (a1 + b1, . . . , an + bn)T;
(3) λ(a1, . . . , an)T = (λa1, . . . , λan)T, λ ∈ R.

而且它们也满足(V1)–(V8).

定义. 若集合 V 带有零向量、加法和实数的数乘, 且满足(V1)–(V8), 则称 V 是一个实线
性空间.

这样, Rn 成为了一个实线性空间.

线性代数 ▶第一章 向量和矩阵 ▶ 1 向量和矩阵的定义 ▶A 向量和向量空间
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线性空间 非考试内容

例.

(1) 平面上经过原点的直线 V = {(x, y) ∈ R2 | ax + by = 0} 是实线性空间.
(2) R3 中经过原点的平面 V = {(x, y, z) ∈ R3 | ax + by + cz = 0} 是实线性空间.
(3) 如果 V 是 Rn 的子集, 且它和继承自 Rn 的零向量、加法和数乘构成线性空间, 则称

V 是向量空间.
(4) R3 中不经过原点的平面 V = {(x, y, z) ∈ R3 | ax + by + cz = 1} 是不是实线性空间.
(5) 实系数多项式全体 R[x] 是实线性空间, 其中的零向量是指零多项式.
(6) 次数不超过 n 的多项式 (含零多项式) 全体是实线性空间.

若数乘的系数是复数而不是实数, 称 V 为复线性空间. 我们可以类似地定义复向量,
且 n 维复向量全体形成一个复线性空间 Cn.

线性代数 ▶第一章 向量和矩阵 ▶ 1 向量和矩阵的定义 ▶A 向量和向量空间
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标准向量空间之间的映射 非考试内容

考虑如下映射

A : Rn −→ Rm
x1
x2
...

xn

 7−→


a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn
...

am1x1 + am2x2 + · · ·+ amnxn

 .

不难验证, 对任意 u, v ∈ Rn, λ ∈ R,

(L1) A(u + v) = A(u) +A(v);

(L2) A(λu) = λA(u).

线性代数 ▶第一章 向量和矩阵 ▶ 1 向量和矩阵的定义 ▶B 线性映射
⊞□□□□⊞□□⊞□□□□□□ 12 / 166
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线性变换 非考试内容

定义. 若映射 A : Rn → Rm 满足(L1),(L2), 称 A 是一个线性变换或线性映射.

反过来, 是不是所有的线性变换 Rn → Rm 都可以表达为前述形式呢?

以线性映射 A : R3 → R4 为例, 记

A

1
0
0

 =


a11
a21
a31
a41

 , A

0
1
0

 =


a12
a22
a32
a42

 , A

0
0
1

 =


a13
a23
a33
a43

 .

线性代数 ▶第一章 向量和矩阵 ▶ 1 向量和矩阵的定义 ▶B 线性映射
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线性变换的形式 非考试内容

根据线性变换的性质,

A

x1
x2
x3

 = A

x1

1
0
0

+ x2

0
1
0

+ x3

0
0
1




= x1A

1
0
0

+ x2A

0
1
0

+ x3A

0
0
1



= x1


a11
a21
a31
a41

+ x2


a12
a22
a32
a42

+ x3


a13
a23
a33
a43

 =


a11x1 + a12x2 + a13x3
a21x1 + a22x2 + a23x3
a31x1 + a32x2 + a33x3
a41x1 + a42x2 + a43x3



.

因此每个线性变换 R3 → R4 都具有前述形式, 它完全由 4× 3 个系数

(aij)1⩽i⩽4,1⩽j⩽3

所确定. 由此引出矩阵的定义.

线性代数 ▶第一章 向量和矩阵 ▶ 1 向量和矩阵的定义 ▶B 线性映射
⊞□□□□⊞□□⊞□□□□□□ 14 / 166
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矩阵的定义

定义. 将 mn 个数按照每行 n 个元素, 每列 m 个元素, 排成的数表称为 m 行 n 列矩阵,
或简称为 m× n 矩阵:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn


m×n

,

其中 aij 表示 A 的第 i 行 j 列元素, 并记 A = (aij)m×n.

我们总使用粗大写字母 A, B, Λ, . . . 表示矩阵. 不强调矩阵的阶时, 也可省略右下角
m× n.

矩阵的圆括号也可用方括号来代替.

线性代数 ▶第一章 向量和矩阵 ▶ 1 向量和矩阵的定义 ▶C 矩阵
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例: 矩阵

例.

(1) A =


0 −1 −2 −3
1 0 −1 −2
2 1 0 −1
3 2 1 0

 = (i− j)4×4.

(2) A =


1 1 · · · 1
1 2 · · · n
...

... . . . ...
1 2n−1 3n−1 nn−1


n

= (ji−1)n.

m = n 时可用 n 来表示右下角的 n× n.
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线性映射与矩阵一一对应 非考试内容

• 令 Mm×n 表示 m 行 n 列的矩阵 (Matrix) 全体.
• 若 m = n, 称相应矩阵为 n 阶方阵, 并用 Mn 来表示 n 阶方阵全体.
• 若要强调矩阵元素都是实数, 我们称相应的矩阵为实矩阵, 并用 Mm×n(R), Mn(R) 来
表示相应集合.
• 全体线性变换 A : Rn → Rm 和 A ∈Mm×n(R) 是一一对应的.

类似可定义复矩阵, Mm×n(C), Mn(C), 且全体线性变换 Cn → Cm 和 Mm×n(C) 一一对
应. 之后此种类比不再赘述.

• 称方阵的对角线上的元素 a11, . . . , ann 为方阵的对角元.

线性代数 ▶第一章 向量和矩阵 ▶ 1 向量和矩阵的定义 ▶C 矩阵
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• 若要强调矩阵元素都是实数, 我们称相应的矩阵为实矩阵, 并用 Mm×n(R), Mn(R) 来
表示相应集合.
• 全体线性变换 A : Rn → Rm 和 A ∈Mm×n(R) 是一一对应的.

类似可定义复矩阵, Mm×n(C), Mn(C), 且全体线性变换 Cn → Cm 和 Mm×n(C) 一一对
应. 之后此种类比不再赘述.

• 称方阵的对角线上的元素 a11, . . . , ann 为方阵的对角元.
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特殊矩阵

元素全为零的矩阵为零矩阵 O = Om×n ∈Mm×n.

方阵中
a11 a12 · · · a1n

a22 · · · a2n

. . . ...
ann

 ,


a11
a21 a22
...

... . . .
an1 an2 · · · ann

 ,


λ1

λ2
. . .

λn

 ∈Mn

分别为上三角阵, 下三角阵和对角阵 (空白部分表示元素都是零). 为书写方便, 对角阵也
可记作 (对角: diagonal)

diag(λ1, λ2, . . . , λn).

称方阵
E = En = diag(1, 1, . . . , 1) ∈Mn

为单位阵.
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矩阵与向量

将只有一行的矩阵
(a1, a2, . . . , an) ∈M1×n

称为 n 维行矩阵.

只有一列的矩阵 
b1
b2
...

bn

 ∈Mn×1

称为 n 维列矩阵.

我们将在后面定义矩阵的加法和数乘, 它与将行 (列) 矩阵看作行 (列) 向量的加法和
数乘是相同的. 于是可将行 (列) 矩阵和对应的行 (列) 向量视为同一对象.

线性代数 ▶第一章 向量和矩阵 ▶ 1 向量和矩阵的定义 ▶C 矩阵
⊞□□□□⊞□□⊞□□□□□□ 19 / 166
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例: 旋转变换

如何用矩阵表示平面 R2 上的旋转?

设 A(x1, x2) 是平面上的一个点, 沿着原点逆时
针旋转角度 θ 变成 B(y1, y2). 利用极坐标将 A 表示为{

x1 = ρ cos α,
x2 = ρ sin α,

则 {
y1 = ρ cos(α + θ) = ρ(cos α cos θ − sin α sin θ) = (cos θ)x1 − (sin θ)x2,
y2 = ρ sin(α + θ) = ρ(cos α sin θ + sin α cos θ) = (sin θ)x1 + (cos θ)x2.

因此上述旋转变换 Rθ 对应的矩阵为

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
∈M2(R).

线性代数 ▶第一章 向量和矩阵 ▶ 1 向量和矩阵的定义 ▶C 矩阵
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例: 线性变换

• A =

λ1
. . .

λn

 表示各个分量分别放大为 λi 倍的线性变换.

• A =
(

0 1
1 0

)
表示平面中沿着直线 x1 = x2 翻转.

• A =

0 1 0
0 0 1
1 0 0

 表示三维空间中沿着直线 x1 = x2 = x3 旋转 2π

3
.

• 想一想: A =

1 0 0
0 1 0
0 0 −1

 表示什么线性变换?

线性代数 ▶第一章 向量和矩阵 ▶ 1 向量和矩阵的定义 ▶C 矩阵
⊞□□□□⊞□□⊞□□□□□□ 21 / 166
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第二节 矩阵的线性运算、乘法和转置
矩阵的线性运算

矩阵的乘法

矩阵的幂

矩阵的转置



线性映射的加法和数乘

给定线性变换 A,B : Rn → Rm 和数 λ ∈ R,

定义
(A+ B)(x) = A(x) + B(x), (λf)(x) = λ

(
A(x)

)
.

对任意 x ∈ Rn,

(A+ B)(x) = A(x) + B(x) (V1)==== B(x) +A(x) = (B +A)(x).

故 (1) A+ B = B +A.

同理

(2) (A+ B) + C = A+ (B + C);
(3) A+O = A, 这里 O 表示零映射: O(x) = 0;
(4) 对任意线性映射 A, 存在线性映射 B = (−1)A 使得 A+ B = O;
(5) (λµ)A = λ(µA) = µ(λA);
(6) (λ + µ)A = λA+ µA;
(7) λ(A+ B) = λA+ λB;
(8) 1 · A = A, 0 · A = O,λ · O = O.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶A 矩阵的线性运算
⊞□□□□□⊞□□□□□□□□□⊞□□□□□□□□□⊞□□□□ 22 / 166
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矩阵的加法和数乘

由此得到对应的矩阵的加法和数乘:

定义. 设 A = (aij)m×n, B = (bij)m×n, λ ∈ R. 定义

A + B = (aij + bij)m×n, (λf)(x) = λ
(
f(x)

)
.

只有同型矩阵(行列数都相同的矩阵) 才能相加. 行 (列) 矩阵的加法和数乘就是其对
应的行 (列) 向量的加法和数乘.

自然地, 矩阵的减法为
A−B = (aij − bij)m×n.
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矩阵加法的性质

由线性映射的相应性质可知:

(1) A + B = B + A;
(2) (A + B) + C = A + (B + C);
(3) A + O = A;
(4) 对于任意矩阵 A, 存在矩阵 B = (−1)A 使得 A + B = O. 称 B 为 A 的负矩阵,
记作 −A.

(5) (λµ)A = λ(µA) = µ(λA);
(6) (λ + µ)A = λA + µA;
(7) λ(A + B) = λA + λB;
(8) 1 ·A = A, 0 ·A = O, λO = O.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶A 矩阵的线性运算
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(6) (λ + µ)A = λA + µA;
(7) λ(A + B) = λA + λB;
(8) 1 ·A = A, 0 ·A = O, λO = O.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶A 矩阵的线性运算
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矩阵线性运算的应用: 图像处理 非考试内容

一张图片由一些像素构成, 上图包含 341× 512 个像素. 在 红
R
绿
G
蓝
B 颜色模式下, 每个像

素包含红绿蓝三个通道, 每个通道为一个 0 ∼ 255 之间的整数, 数值越高对应颜色越亮.
例如

• R = 0, G = 0, B = 0 表示纯黑色;
• R = 255, G = 255, B = 255 表示纯白色 ;
• R = 255, G = 0, B = 255 表示纯紫色.

若三个通道相同, 图片就是一张灰色的图. 此时图片对应一个 341× 512 的矩阵 A.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶A 矩阵的线性运算
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矩阵线性运算的应用: 图像处理 非考试内容

想一想: 如何将这个图像变亮?

=⇒

我们只需要增加每个元素的值, 例如 (超过 255 的需要修正为 255)

A +

50 · · · 50
... . . . ...

50 · · · 50

 , 1.5A,
1
2

(A +

255 · · · 255
... . . . ...

255 · · · 255

).

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶A 矩阵的线性运算
⊞□□□□□⊞□□□□□□□□□⊞□□□□□□□□□⊞□□□□ 26 / 166
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矩阵线性运算的应用: 图像处理 非考试内容

如何让图像反色?

=⇒

255 · · · 255
... . . . ...

255 · · · 255

−A.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶A 矩阵的线性运算
⊞□□□□□⊞□□□□□□□□□⊞□□□□□□□□□⊞□□□□ 27 / 166
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线性变换的复合

设线性映射
A : Rn → Rm, B : Rp → Rn, C = A ◦ B : Rp → Rm

对应的矩阵为 A = (aij)m×n, B = (bij)n×p, C = (cij)m×p.

如何用 A, B 来表示 C 呢?
设 x = (x1, . . . , xp)T ∈ Rp, 则

B(x) = (y1, . . . , yn)T, yk =
p∑

j=1
bkjxj .

A
(
B(x)

)
= (z1, . . . , zm)T, zi =

n∑
k=1

aikyk =
n∑

k=1
aik

p∑
j=1

bkjxj =
p∑

j=1

( n∑
k=1

aikbkj

)
xj .

=⇒ C = (cij)m×p, cij =
n∑

k=1
aikbkj .

我们把它定义为矩阵的乘法 C = AB.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶B 矩阵的乘法
⊞□□□□□⊞□□□□□□□□□⊞□□□□□□□□□⊞□□□□ 28 / 166
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矩阵乘法的定义

定义. 设 A = (aij)m×n, B = (bij)n×p. 定义矩阵的乘法为 C = AB = (cij)m×p, 其中

cij =
n∑

k=1
aikbkj .

只有第一个矩阵的列数等于第二个矩阵的行数才能相乘.

(
1 2
2 1

)0 0 0
0 0 0
0 0 0

 =?

不能相乘!

简单来说, AB 的 (i, j) 元就是 A 的 i 行和 B 的 j 列对应分量相乘后求和得到的.
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行向量与列向量的乘法

设 A = (a1, . . . , an) 是 n 维行向量, B = (b1, . . . , bn)T 是 n 维列向量.

AB, BA =?

AB =
n∑

i=1
aibi, BA = (biaj)n×n ∈Mn.

对于矩阵 A = (aij)m×n, B = (bij)n×p. AB 的 (i, j) 元其实就是 A 第 i 行对应的行
向量和 B 第 j 列对应的列向量相乘得到的数 (1 阶方阵包含的唯一元素):

α1
α2
...

αm

 (β1, β2, · · · , βp) =


α1β1 α1β2 · · · α1βp

α2β1 α2β2 · · · α2βp
...

... . . . ...
αmβ1 αmβ2 · · · αmβp

 .
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例: 矩阵乘法的计算

例. 求矩阵 A =
(

1 2 0 −1
2 1 4 0

)
与 B =


2 0 1
−2 3 1
1 5 0
1 −3 4

 的乘积 AB.

解答. (
1 2 0 −1
2 1 4 0

)
2 0 1
−2 3 1
1 5 0
1 −3 4

 =
(

− 3 9 − 1
6 23 3

)
.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶B 矩阵的乘法
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矩阵乘法的性质

线性映射满足如下性质:

(1) (A ◦ B) ◦ C = A ◦ (B ◦ C);
(2) λ(A ◦ B) = (λA) ◦ B = A ◦ (λB);
(3) A ◦ (B + C) = A ◦ B +A ◦ C;
(4) Em ◦ A = A ◦ En = A, 这里 E 表示恒等映射: E(x) = x;
(5) O ◦ A = A ◦ O = O.

由此可知矩阵乘法满足如下性质:

(1) (AB)C = A(BC);
(2) λ(AB) = (λA)B = A(λB);
(3) A(B + C) = AB + AC;
(4) 若 A ∈Mm×n, 则 EmA = AEn = A.
(5) 若 A ∈Mm×n, 则 Op×mA = Op×n, AOn×p = Om×p.
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矩阵乘法和线性方程组

矩阵 A 对应的线性变换就是
A : Rn → Rm, x 7→ Ax.

因此解线性方程组 
a11 x1 + a12 x2 + · · ·+ a1n xn = b1
a21 x1 + a22 x2 + · · ·+ a2n xn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm

等价于解矩阵方阵 Ax = b, 其中

x =


x1
x2
...

xn

 , b =


b1
b2
...

bm

 .
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矩阵乘法无交换律和消去律

矩阵的乘法不能随意交换顺序.

一般称 AB 为 A 左乘 B, 或者 B 右乘 A.
若 AB = BA, 则称 A, B 是可交换的. 此时 A, B 必为同阶方阵. 例如(

1 2
0 1

)(
2 1
0 2

)
=
(

2 5
0 2

)
=
(

2 1
0 2

)(
1 2
0 1

)
方阵总和同阶单位阵交换.
矩阵乘法也没有消去律: AB = O 推不出 A = O 或 B = O. 例如(

2 4
1 2

)(
2 −2
−1 1

)
= O2.

由此可知: AC = BC 推不出 A = B.

练习. 设 A, B 为 n > 1 阶方阵, 则 A + AB =(

C

).

A(1 + B)(A) (E + B)A(B) A(E + B)(C) 以上都不对(D)

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶B 矩阵的乘法
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例: 与给定矩阵可交换

例. 求与矩阵 A =

0 1 0
0 1

0

 可交换的所有矩阵.

解答. 设 B = (aij)3×3 与 A 可交换, 则

AB =

a21 a22 a23
a31 a32 a33
0 0 0

 = BA =

0 a11 a12
0 a21 a22
0 a31 a32

 ,

a21 = a31 = a32 = 0, a11 = a22 = a33, a23 = a12,

即 B =

a11 a12 a13
a11 a12

a11

.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶B 矩阵的乘法
⊞□□□□□⊞□□□□□□□□□⊞□□□□□□□□□⊞□□□□ 35 / 166
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矩阵乘法的应用: 图像校正 非考试内容

某位同学拍身份证照片拍成了下图的样子, 如何才能修复好呢?

O

A

B

以左下角为原点, 通过测量发现 A 坐标为 (521, 88), B 坐标为 (19, 311).
经过查询知道身份证长宽比为 42.7 : 27. 令 A′ = (427, 0), B′ = (0, 270). 我们希望找

到一个线性变换, 将 A, B 变为 A′, B′.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶B 矩阵的乘法
⊞□□□□□⊞□□□□□□□□□⊞□□□□□□□□□⊞□□□□ 36 / 166



矩阵乘法的应用: 图像校正 非考试内容

某位同学拍身份证照片拍成了下图的样子, 如何才能修复好呢?

O

A

B

以左下角为原点, 通过测量发现 A 坐标为 (521, 88), B 坐标为 (19, 311).

经过查询知道身份证长宽比为 42.7 : 27. 令 A′ = (427, 0), B′ = (0, 270). 我们希望找
到一个线性变换, 将 A, B 变为 A′, B′.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶B 矩阵的乘法
⊞□□□□□⊞□□□□□□□□□⊞□□□□□□□□□⊞□□□□ 36 / 166



矩阵乘法的应用: 图像校正 非考试内容

某位同学拍身份证照片拍成了下图的样子, 如何才能修复好呢?

O

A

B

以左下角为原点, 通过测量发现 A 坐标为 (521, 88), B 坐标为 (19, 311).
经过查询知道身份证长宽比为 42.7 : 27.

令 A′ = (427, 0), B′ = (0, 270). 我们希望找
到一个线性变换, 将 A, B 变为 A′, B′.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶B 矩阵的乘法
⊞□□□□□⊞□□□□□□□□□⊞□□□□□□□□□⊞□□□□ 36 / 166



矩阵乘法的应用: 图像校正 非考试内容

某位同学拍身份证照片拍成了下图的样子, 如何才能修复好呢?

O

A

B

以左下角为原点, 通过测量发现 A 坐标为 (521, 88), B 坐标为 (19, 311).
经过查询知道身份证长宽比为 42.7 : 27. 令 A′ = (427, 0), B′ = (0, 270). 我们希望找

到一个线性变换, 将 A, B 变为 A′, B′.
线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶B 矩阵的乘法
⊞□□□□□⊞□□□□□□□□□⊞□□□□□□□□□⊞□□□□ 36 / 166



矩阵乘法的应用: 图像校正 非考试内容

设该线性变换对应的矩阵为 A =
(

a b
c d

)
, 则

A

(
521 19
88 311

)
=
(

427 0
0 270

)
,

即


521a + 88 b = 427
19 a + 311b = 0
521c + 88 d = 0
19 c + 311d = 270

解得 A =
(

0.828 −0.051
−0.148 0.877

)
. 通过应用该变换, 图片被修复成如下效果:

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶B 矩阵的乘法
⊞□□□□□⊞□□□□□□□□□⊞□□□□□□□□□⊞□□□□ 37 / 166
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矩阵幂的定义

定义. 设 A 为 n 阶方阵, 定义 A 的幂

A0 = En, Ak = A ·A · · · · ·A︸ ︷︷ ︸
k 个

.

矩阵幂满足如下性质 (k, ℓ 为非负整数):

(1) Ak+ℓ = Ak ·Aℓ;
(2) Akℓ = (Ak)ℓ.

注意 (AB)k 一般不等于 Ak ·Bk. 想一想: 下面的等式成立吗?

(A−B)(A + B) = A2 −B2? (A + B)2 = A2 + 2AB + B2?

当且仅当 AB = BA 时成立.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶C 矩阵的幂
⊞□□□□□⊞□□□□□□□□□⊞□□□□□□□□□⊞□□□□ 38 / 166
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A0 = En, Ak = A ·A · · · · ·A︸ ︷︷ ︸
k 个

.

矩阵幂满足如下性质 (k, ℓ 为非负整数):

(1) Ak+ℓ = Ak ·Aℓ;
(2) Akℓ = (Ak)ℓ.
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例: 矩阵幂的计算

例. 设 A = diag(λ1, · · · , λn). 求 Ak.

解答.
A2 = A ·A = diag(λ2

1, · · · , λ2
n),

A3 = A ·A2 = diag(λ3
1, · · · , λ3

n),

递推下去可知
Ak = diag(λk

1, · · · , λk
n).
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例: 矩阵幂的计算

例. 设 A =

λ 1 0
λ 1

λ

 . 求 Ak.

解答.

A2 =

λ 1 0
λ 1

λ

λ 1 0
λ 1

λ

 =

λ2 2λ 1
λ2 2λ

λ2

 ,

A3 =

λ 1 0
λ 1

λ

λ2 2λ 1
λ2 2λ

λ2

 =

λ3 3λ2 3λ
λ3 3λ2

λ3

 .

归纳可知 Ak =

λk kλk−1 1
2 k(k − 1)λk−2

λk kλk−1

λk

.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶C 矩阵的幂
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例: 矩阵幂的计算

另解. 设 N =

0 1 0
0 1

0

, 则 N2 =

0 0 1
0 0

0

 , N3 = O.

由于 A = λE + N 且 E 和

N 可交换, 因此

Ak = (λE + N)k = λkE + C1
kλk−1N + C2

kλk−2N2

=


λk kλk−1 1

2
k(k − 1)λk−2

λk kλk−1

λk

.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶C 矩阵的幂
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例: 矩阵幂的计算

例. 设 A =
(

cos θ − sin θ
sin θ cos θ

)
. 求 Ak.

解答. 注意到 A 对应平面 R2 上的线性变换是逆时针旋转 θ, 所以 Ak 就是逆时针旋转
nθ, 对应的矩阵为

Ak =
(

cos kθ − sin kθ
sin kθ cos kθ

)
.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶C 矩阵的幂
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例: 矩阵幂的计算

例. 设 A = (1, 2, 3), B =

−1
2
0

 . 求 (BA)k.

解答. 注意到 AB = 3,

因此

(BA)k = B(AB)k−1A

= B · 3k−1 ·A = 3k−1BA =

−3k−1 −2 · 3k−1 −3k

2 · 3k−1 4 · 3k−1 2 · 3k

0 0 0

 .

把数 λ 看成一阶方阵时, 它右乘一列向量、或左乘一行向量和数乘效果一样.

该方法可用于计算每行之间成比例的方阵的幂.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶C 矩阵的幂
⊞□□□□□⊞□□□□□□□□□⊞□□□□□□□□□⊞□□□□ 43 / 166



例: 矩阵幂的计算

例. 设 A = (1, 2, 3), B =

−1
2
0

 . 求 (BA)k.

解答. 注意到 AB = 3,

因此

(BA)k = B(AB)k−1A

= B · 3k−1 ·A = 3k−1BA =

−3k−1 −2 · 3k−1 −3k

2 · 3k−1 4 · 3k−1 2 · 3k

0 0 0

 .

把数 λ 看成一阶方阵时, 它右乘一列向量、或左乘一行向量和数乘效果一样.

该方法可用于计算每行之间成比例的方阵的幂.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶C 矩阵的幂
⊞□□□□□⊞□□□□□□□□□⊞□□□□□□□□□⊞□□□□ 43 / 166



例: 矩阵幂的计算

例. 设 A = (1, 2, 3), B =

−1
2
0

 . 求 (BA)k.

解答. 注意到 AB = 3, 因此

(BA)k = B(AB)k−1A

= B · 3k−1 ·A = 3k−1BA =

−3k−1 −2 · 3k−1 −3k

2 · 3k−1 4 · 3k−1 2 · 3k

0 0 0

 .

把数 λ 看成一阶方阵时, 它右乘一列向量、或左乘一行向量和数乘效果一样.

该方法可用于计算每行之间成比例的方阵的幂.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶C 矩阵的幂
⊞□□□□□⊞□□□□□□□□□⊞□□□□□□□□□⊞□□□□ 43 / 166



例: 矩阵幂的计算

例. 设 A = (1, 2, 3), B =

−1
2
0

 . 求 (BA)k.

解答. 注意到 AB = 3, 因此

(BA)k = B(AB)k−1A = B · 3k−1 ·A = 3k−1BA

=

−3k−1 −2 · 3k−1 −3k

2 · 3k−1 4 · 3k−1 2 · 3k

0 0 0

 .

把数 λ 看成一阶方阵时, 它右乘一列向量、或左乘一行向量和数乘效果一样.

该方法可用于计算每行之间成比例的方阵的幂.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶C 矩阵的幂
⊞□□□□□⊞□□□□□□□□□⊞□□□□□□□□□⊞□□□□ 43 / 166



例: 矩阵幂的计算

例. 设 A = (1, 2, 3), B =

−1
2
0

 . 求 (BA)k.

解答. 注意到 AB = 3, 因此

(BA)k = B(AB)k−1A = B · 3k−1 ·A = 3k−1BA =

−3k−1 −2 · 3k−1 −3k

2 · 3k−1 4 · 3k−1 2 · 3k

0 0 0

 .

把数 λ 看成一阶方阵时, 它右乘一列向量、或左乘一行向量和数乘效果一样.

该方法可用于计算每行之间成比例的方阵的幂.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶C 矩阵的幂
⊞□□□□□⊞□□□□□□□□□⊞□□□□□□□□□⊞□□□□ 43 / 166



例: 矩阵幂的计算

例. 设 A = (1, 2, 3), B =

−1
2
0

 . 求 (BA)k.

解答. 注意到 AB = 3, 因此

(BA)k = B(AB)k−1A = B · 3k−1 ·A = 3k−1BA =

−3k−1 −2 · 3k−1 −3k

2 · 3k−1 4 · 3k−1 2 · 3k

0 0 0

 .

把数 λ 看成一阶方阵时, 它右乘一列向量、或左乘一行向量和数乘效果一样.

该方法可用于计算每行之间成比例的方阵的幂.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶C 矩阵的幂
⊞□□□□□⊞□□□□□□□□□⊞□□□□□□□□□⊞□□□□ 43 / 166



例: 矩阵幂的计算

例. 设 A = (1, 2, 3), B =

−1
2
0

 . 求 (BA)k.

解答. 注意到 AB = 3, 因此

(BA)k = B(AB)k−1A = B · 3k−1 ·A = 3k−1BA =

−3k−1 −2 · 3k−1 −3k

2 · 3k−1 4 · 3k−1 2 · 3k

0 0 0

 .

把数 λ 看成一阶方阵时, 它右乘一列向量、或左乘一行向量和数乘效果一样.

该方法可用于计算每行之间成比例的方阵的幂.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶C 矩阵的幂
⊞□□□□□⊞□□□□□□□□□⊞□□□□□□□□□⊞□□□□ 43 / 166



例: 矩阵幂的计算

练习. 设 A =

1 2 3
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1
2
3
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方阵的多项式

设
f(x) = amxm + · · ·+ a1x + a0

是一个多项式.

对于 n 阶方阵 A, 定义

f(A) = amAm + · · ·+ a1A + a0E.

和幂的计算类似, 我们有

(1) f
(
diag(λ1, . . . , λn)

)
= diag

(
f(λ1), . . . , f(λn)

)
.

(2) f(λE + N) = f(λ)E + f ′(λ)N + 1
2!

f ′′(λ)N2 + · · ·+ 1
(n− 1)!

f (n−1)Nn−1.

(3) 若 a0 = 0, 则 f(αβT) = f(λ)
λ

A, 其中 λ = βTα.
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矩阵幂的应用: 换乘 非考试内容

网上订票系统里记录了所有能直飞的航班线路. 对于不能直达的城市, 该怎么确定是
否有换乘方案呢?

例如 4 个城市之间的航线如图所示:

1

2 3

4

⇐⇒ 邻接矩阵 A =


0 1 1 1
1 0 0 0
0 1 0 0
1 0 1 0



邻接矩阵中 aij = 1 表示从 i 到 j 有直飞航线.
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矩阵幂的应用: 换乘 非考试内容

于是 A2 的 (i, j) 元
bij =

4∑
k=1

aikakj

就是从 i 到 j 换乘一次的方案数.

例如从 2 =⇒ 3 :

A2 =


0 1 1 1
1 0 0 0
0 1 0 0
1 0 1 0




0 1 1 1
1 0 0 0
0 1 0 0
1 0 1 0

 =


2 1 1 0
0 1 1 1
1 0 0 0
0 2 1 1

.

由于 b23 = 1, 因此可通过 2 =⇒ 1 =⇒ 3 换乘一次到达.

想一想: 如何从 3 到达 4 ? 考虑 A3, 即换乘两次即可.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶C 矩阵的幂
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0 1 0 0
1 0 1 0




0 1 1 1
1 0 0 0
0 1 0 0
1 0 1 0

 =


2 1 1 0
0 1 1 1
1 0 0 0
0 2 1 1

.

由于 b23 = 1, 因此可通过 2 =⇒ 1 =⇒ 3 换乘一次到达.

想一想: 如何从 3 到达 4 ? 考虑 A3, 即换乘两次即可.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶C 矩阵的幂
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矩阵转置的定义

若 A = (aij)m×n, 称

AT = (aji)n×m =


a11 a21 · · · am1
a12 a22 · · · am2
...

... . . . ...
a1n a2n · · · amn

 ∈Mn×m

为矩阵 A 的转置.

如同我们之前使用过的写法, 行向量的转置就是列向量a1
...

an

 = (a1, . . . , an)T.

方阵的转置还是方阵, 上三角阵的转置是下三角阵.

AT 对应的线性变换是 A 对应的线性变换诱导的对偶空间上的线性变换, 感兴趣的
可自行阅读有关材料.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶D 矩阵的转置
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矩阵转置的性质

矩阵的转置满足如下性质:

(1) (AT)T = A;
(2) (A + B)T = AT + BT;
(3) (λA)T = λAT;
(4) (AB)T = BTAT.

例如 a11 a12 a13
a21 a22 a23
a31 a32 a33


b1

b2
b3

 =

c1
c2
c3

 ,

两边取转置得到

(b1, b2, b3)

a11 a21 a31
a12 a22 a32
a13 a23 a33

 = (c1, c2, c3).

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶D 矩阵的转置
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对称阵和反对称阵

定义.

• 若方阵 A 满足 AT = A, 称 A 为对称阵;
• 若 AT = −A, 称 A 为反对称阵.

例如
12 6 1

6 8 0
1 0 6

 是对称阵. 对角矩阵都是对称阵.

例如
 0 6 1
−6 0 0
−1 0 0

 是反对称阵. 反对称阵的对角线均为 0.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶D 矩阵的转置
⊞□□□□□⊞□□□□□□□□□⊞□□□□□□□□□⊞□□□□ 50 / 166
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对称阵和反对称阵

例. 证明: 若 A, B, AB 都是对称阵, 则 AB = BA.

证明. 由题设可知 AT = A, BT = B,

AB = (AB)T = BTAT = BA.

想一想: 若 A, B, AB 中有一个对称阵和两个反对称阵呢? 同理 AB = BA.

练习. 设 A 是 n 阶方阵, (

A

)一定是对称阵?

ATA(A) A−AT(B) A2(C) AT −A(D)

一般地, 若 A ∈Mm×n, AAT 是 m 阶对称阵, ATA 是 n 阶对称阵.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶D 矩阵的转置
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想一想: 若 A, B, AB 中有一个对称阵和两个反对称阵呢?

同理 AB = BA.

练习. 设 A 是 n 阶方阵, (

A

)一定是对称阵?

ATA(A) A−AT(B) A2(C) AT −A(D)

一般地, 若 A ∈Mm×n, AAT 是 m 阶对称阵, ATA 是 n 阶对称阵.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶D 矩阵的转置
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任一方阵可表为对称阵与反对称阵之和

例. 证明: 任一方阵均可写成一对称阵和一反对称阵之和.

证明.

A = A + AT

2
+ A−AT

2
.

想一想:

• 若函数 f(x) 的定义域关于原点对称, 则 f(x) 可以表示成一个偶函数和一个奇函数
之和.

• 复数 z 可以写成 z1 + z2, 其中 z1 = z1, z2 = −z2.

线性代数 ▶第一章 向量和矩阵 ▶ 2 矩阵的线性运算、乘法和转置 ▶D 矩阵的转置
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第三节 方阵的行列式
行列式的定义

行列式的性质

拉普拉斯展开

行列式的计算举例

三对角和范德蒙型行列式



引例: 平行四边形的面积 非考试内容

设平面上有 OACB, 其中 A, B 坐标分别为 u = (a, b)T, v = (c, d)T.

如果
u = (1, 0)T, v = (0, 1)T, 那么面积为 1. 如果将 u 换成 ku, 那么面积变为 |k| 倍. 如果将
u 拆分为 (a, 0)T + (0, b)T, 那么得到的三个平行四边形的面积有什么联系呢?

O

A

B
C

A1

C1

A2

C2

O

A

B
C

A1

C1

A2

C2

令 A1(a, 0), 并作 OA1C1B; 令 A2(0, b), 并作 OA2C2B. 那么 OACB 的面积是这
两个相加还是相减? 使用割补法可知为二者相减.
如果 A 在第一象限, B 在第二象限. 那么 OACB 的面积是这两个相加还是相

减?使用割补法可知为二者相加.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶A 行列式的定义
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 53 / 166
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有向面积 非考试内容

为何第一种情形是相减而第二种情形是相加呢?

观察发现: 这些平行四边形中只有
第一种情形的 OA2C2B, 从 OA2 到 OB 是顺时针方向. 如果定义有向面积并记为

|u, v| =
∣∣∣∣∣a c
b d

∣∣∣∣∣ =
{

S OACB, 从 OA 到 OB 是逆时针;
−S OACB, 从 OA 到 OB 是顺时针.

那么 ∣∣∣∣∣a c
b d

∣∣∣∣∣ =
∣∣∣∣∣a c
0 d

∣∣∣∣∣+
∣∣∣∣∣0 c
b d

∣∣∣∣∣ = a

∣∣∣∣∣1 c
0 d

∣∣∣∣∣+ b

∣∣∣∣∣0 c
1 d

∣∣∣∣∣ .
换言之, v 固定时, 则 |u, v| 关于 u 是线性的. 同理, u 固定时, |u, v| 关于 v 也是线性的.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶A 行列式的定义
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 54 / 166
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平行多面体情形 非考试内容

将上述概念推广到 n 维情形.

考虑 n 维空间中由从原点出发的向量 v1, . . . , vn 张成
的平行多面体. 如果 v1, . . . , vn 就是按顺序各个分量上的单位向量

e1 = (1, 0, . . . , 0)T, e2 = (0, 1, . . . , 0)T, · · · , en = (0, 0, . . . , 1)T,

则有向面积为 1. 如果交换 vi, vj 的位置, 有向面积相差 −1 倍. 于是得到 n 维情形的有
向面积 |v1, . . . , vn| 应当满足:

(1) |e1, . . . , en| = 1;
(2) 反对称性: | · · · , vi, · · · , vj , · · · | = −| · · · , vj , · · · , vi, · · · |;
(3) | · · · , kα, · · · | = k| · · · , α, · · · |;
(4) | · · · , α + β, · · · | = | · · · , α, · · · |+ | · · · , β, · · · |.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶A 行列式的定义
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 55 / 166
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行列式的定义 非考试内容

设 n 阶方阵 A = (aij) 的各列形成的向量为 v1, . . . , vn,

称有向面积 |v1, · · · , vn| 就
是方阵 A 的行列式. 注意到

vj = a1je1 + a2je2 + · · ·+ anjen,

利用线性性质将行列式展开将会得到 nn 项
n∑

k1,k2,...,kn=1
|ek1 , · · · , ekn |ak11ak22 · · · aknn.

如果 ki = kj , 则交换 eki
, ekj

可知 |ek1 , · · · , ekn | = 0. 从而只剩下 k1, k2, . . . , kn 是
1, 2, . . . , n 的排列时的那些项. 例如:∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣ = |a11e1, a12e1 + a22e2|+ |a21e2, a12e1 + a22e2|

= a11a12|e1, e1|+ a11a22|e1, e2|+ a21a12|e2, e1|+ a21a22|e2, e2|
= a11a22 − a21a12.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶A 行列式的定义
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 56 / 166
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行列式的展开形式 非考试内容

设 k1, k2, . . . , kn 是 1, 2, . . . , n 的排列.

如果排列 k1, k2, . . . , kn 需要奇数次对换变成
1, 2, . . . , n, 记 sgn(k1, . . . , kn) = −1; 否则 sgn(k1, . . . , kn) = +1. 根据反对称性,

|ek1 , · · · , ekn | = sgn(k1, . . . , kn)|e1, · · · , en| = sgn(k1, . . . , kn).

定义. 设 A = (aij) 是 n 阶方阵. 定义 A 的行列式为

|A| =
∑

sgn(k1, . . . , kn)ak11ak22 · · · aknn,

其中 k1, k2, . . . , kn 取遍 1, 2, . . . , n 的全体排列.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶A 行列式的定义
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 57 / 166
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例: 2, 3 阶行列式的计算

例. ∣∣∣∣∣∣∣
1 3 2
3 −5 1
2 1 4

∣∣∣∣∣∣∣

= 1 · (−5) · 4 + 3 · 1 · 2 + 2 · 3 · 1− 1 · 1 · 1− 3 · 3 · 4− 2 · (−5) · 2

= −20 + 6 + 6− 1− 36 + 20 = −25.

练习. 若 k > 0 且

∣∣∣∣∣∣∣
k 2 1
2 k 1
k 1 2

∣∣∣∣∣∣∣ = 0, 则 k =

2

.
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注记

(1) 行列式将一个方阵映射到一个数.

(2) 1 阶行列式就是方阵里面唯一的那个元素, 尽管也记作 | · |, 但注意和绝对值区分.
(3) 2, 3 阶行列式可以用对角线法直接得到展开式, 但是更高阶的没有这种表示方法.
(4) 对角阵的行列式 ∣∣diag(a1, a2, . . . , an)

∣∣ = a1a2 · · · an,

特别地 |En| = 1, |On| = 0.
(5) |A| 是由一些 ±ak11ak22 · · · aknn 相加得到, 其中 k1, k2, . . . , kn 取遍 1, 2, . . . , n 的所
有排列, 一共有 n! 个这样的项, 其中一半取 +, 一半取 − (n ⩾ 2).

(6) |A| 对应的线性变换 (常数倍) 是 A 对应的线性变换 Rn → Rn 诱导的 n 次外代数上
的线性变换

∧n Rn →
∧n Rn, 感兴趣的可自行阅读有关材料.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶A 行列式的定义
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有排列, 一共有 n! 个这样的项, 其中一半取 +, 一半取 − (n ⩾ 2).

(6) |A| 对应的线性变换 (常数倍) 是 A 对应的线性变换 Rn → Rn 诱导的 n 次外代数上
的线性变换
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∧n Rn, 感兴趣的可自行阅读有关材料.
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注记

(1) 行列式将一个方阵映射到一个数.
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行列式的乘性

(1) |AB| = |A| · |B|.

证明. 设 f(X) := |AX|, 即 f(v1, . . . , vn) = |Av1, . . . , Avn|.

容易知道 f 也满足反对称
性, 且对任意 vi 是线性的. 类似于行列式展开可知, 对于 X = (aij),

f(X) =
∑

f(ek1 , . . . , ekn)ak11ak22 · · · aknn

=
∑

f(e1, . . . , en) sgn(k1, . . . , kn)ak11ak22 · · · aknn

= f(E)|X| = |A| · |X|,

其中 k1, k2, . . . , kn 取遍 1, 2, . . . , n 的全体排列. 故 |AB| = f(B) = |A| · |B|.

由此可知, 对于平行多面体 V ⊂ Rn, A 对应的线性映射将其面积变为 |A| 倍.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶B 行列式的性质
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例: 行列式的乘性

例. 证明:

∣∣∣∣∣∣∣
a1 + b1 b1 + c1 c1 + a1
a2 + b2 b2 + c2 c2 + a2
a3 + b3 b3 + c3 c3 + a3

∣∣∣∣∣∣∣ = 2

∣∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣∣.

证明. ∣∣∣∣∣∣∣
a1 + b1 b1 + c1 c1 + a1
a2 + b2 b2 + c2 c2 + a2
a3 + b3 b3 + c3 c3 + a3

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣
1 0 1
1 1 0
0 1 1

∣∣∣∣∣∣∣

= 2

∣∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣∣ .
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行列式的转置不变性

(2) 转置不改变行列式: |AT| = |A|.

一个排列 k1, . . . , kn 可以看成是集合 {1, 2, . . . , n} 到自身的双射 i 7→ ki. 设它的逆映
射对应的排列是 ℓ1, . . . , ℓn, 则 ℓki

= i. 由于

|A| =
∑

sgn(k1, . . . , kn)ak11 · · · aknn =
∑

sgn(k1, . . . , kn)a1ℓ1 · · · anℓn ,

|AT| =
∑

sgn(ℓ1, . . . , ℓn)a1ℓ1 · · · anℓn ,

我们只需说明 sgn(k1, . . . , kn) = sgn(ℓ1, . . . , ℓn). 设

P = (ek1 , ek2 , . . . , ekn)

的 ki 行 i 列为 1, 其余项为零. 那么 |P | = sgn(k1, . . . , kn), |P T| = sgn(ℓ1, . . . , ℓn). 由于
P P T = E, 因此 |P | · |P T| = |E| = 1. 而 |P | = ±1, 因此 |P | = |P T|.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶B 行列式的性质
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例: 方阵的行列式

例. 设 A =


a −b −c −d
b a −d c
c d a −b
d −c b a

, 求 |A|.

解答. 这题可以直接硬算, 不过我们可以利用一点小技巧:

AAT =


a −b −c −d
b a −d c
c d a −b
d −c b a




a b c d
−b a d −c
−c −d a b
−d c −b a

 = (a2 + b2 + c2 + d2)E.

因此 |A| = ±(a2 + b2 + c2 + d2)2. 因为 |A| 一定有 a4 项, 所以 |A| = (a2 + b2 + c2 + d2)2.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶B 行列式的性质
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行列式线性性

再根据行列式关于每个列向量的线性性和反对称性有:

(3) 互换两行 (列) 后, 方阵的行列式变为 −1 倍.
(4) 方阵的某一行 (列) 乘 k 后, 方阵的行列式变为 k 倍.
(5) 将方阵某一行 (列) 对应向量写成两个向量之和, 则行列式也可对应拆成两个行列式
之和.

推论.

(1) 具有相同的两行 (列) 的方阵的行列式为零: | · · · , v, · · · , v, · · · | = 0.
(2) 若方阵有一行 (列) 全为零, 则行列式为零: | · · · , 0, · · · | = 0.
(3) 若方阵有两行 (列) 成比例, 则行列式为零: | · · · , v, · · · , kv, · · · | = 0.
(4) 行列式中某一行 (列) 的公因子可以提到行列式外面.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶B 行列式的性质
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初等变换

计算行列式可以通过实施下列变换来化简:

定义.初等变换

(1) 互换两行 (列): ri ↔ rj, ci ↔ cj, 行列式变号;
(2) 一行 (列) 乘非零常数 k: kri, kci, 行列式变为 k 倍;
(3) j 行 (列) 乘 k 加到 i 行 (列): ri + krj, ci + kcj, 行列式不变.

实施第三类初等变换 ci + kcj 时, 第 j 列不变, 改变的是第 i 列. 由于

| · · · , vi, · · · , vj , · · · | = | · · · , vi, · · · , vj , · · · |+ | · · · , kvj , · · · , vj , · · · |
= | · · · , vi + kvj , · · · , vj , · · · |,

因此第三类初等变换不改变行列式的值.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶B 行列式的性质
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 66 / 166
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例: 使用初等变换计算行列式

练习.

(1) 判断题: |λA| = λ|A|.

|λA| = λn|A|

(2) 判断题:

∣∣∣∣∣∣∣∣∣
1

2
3

4

∣∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣∣
1

2
3

4

∣∣∣∣∣∣∣∣∣.

|e4, e3, e2, e1| = 1

(3) 计算

∣∣∣∣∣∣∣∣∣
a1 + b1 b1 + c1 c1 + d1 d1 + a1
a2 + b2 b2 + c2 c2 + d2 d2 + a2
a3 + b3 b3 + c3 c3 + d3 d3 + a3
a4 + b4 b4 + c4 c4 + d4 d4 + a4

∣∣∣∣∣∣∣∣∣ =

0

.

(4) 设 A 为 5 阶方阵, |A| = −1, 则 |2A| =

−32

,
∣∣|A|A∣∣ =

1

.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶B 行列式的性质
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 67 / 166
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例: 方阵的行列式

例. 计算

∣∣∣∣∣∣∣
2 sin a cos a sin a cos b + cos a sin b sin a cos c + cos a sin c

sin b cos a + cos b sin a 2 sin b cos b sin b cos c + cos b sin c
sin c cos a + cos c sin a sin c cos b + cos c sin b 2 sin c cos c

∣∣∣∣∣∣∣.

容易看出该方阵可写成两个方阵之和sin a cos a sin a cos b sin a cos c
sin b cos a sin b cos b sin b cos c
sin c cos a sin c cos b sin c cos c

+

cos a sin a cos a sin b cos a sin c
cos b sin a cos b sin b cos b sin c
cos c sin a cos c sin b cos c sin c

 .

这两个方阵各自满足各行成比例, 因此可分别写成sin a
sin b
sin c

 (cos a, cos b, cos c),

cos a
cos b
cos c

 (sin a, sin b, sin c).

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶B 行列式的性质
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 68 / 166
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例: 方阵的行列式

因此原方阵为 sin a cos a
sin b cos b
sin c cos c

 · (cos a cos b cos c
sin a sin b sin c

)
.

解答. 原式 =

∣∣∣∣∣∣∣
sin a cos a 0
sin b cos b 0
sin c cos c 0

∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣
cos a cos b cos c
sin a sin b sin c

0 0 0

∣∣∣∣∣∣∣ = 0.

设 A ∈Mm×n, B ∈Mn×m. 若 m > n, 则

|AB| =
∣∣∣∣∣(A, Om×(m−n))

(
B

O(m−n)×m

)∣∣∣∣∣= 0.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶B 行列式的性质
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 69 / 166
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例: 方阵的行列式

例. 设 n 阶方阵 A 是反对称阵. 若 n 是奇数, 则 |A| = 0.

证明. 由于 AT = −A, 于是

|A| = |AT| = |−A| = (−1)n|A| = −|A|.

故 |A| = 0.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶B 行列式的性质
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例: 使用初等变换计算行列式
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余子式和代数余子式

我们来介绍行列式与方阵子式的联系.

定义. 设 A = (aij) 是 n ⩾ 2 阶方阵.

(1) A 去掉第 i 行和 j 列得到的 n− 1 阶方阵的行列式称为 A 在 (i, j) 处的余子式
(Minor), 记为 Mij.

(2) 称 Aij = (−1)i+jMij 为 A 在 (i, j) 处的代数余子式 (Algebraic Minor).

注意余子式和代数余子式是数而不是矩阵.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶C 拉普拉斯展开
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 72 / 166
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行列式与余子式的联系 非考试内容

假设 A 的第 n 列除了 ann 都是零.

若 kn 6= n, 则 ak11 · · · aknn = 0; 若 kn = n, 则
sgn(k1, . . . , kn−1, n) = sgn(k1, . . . , kn−1). 因此

|A| =
∑

sgn(k1, . . . , kn−1, n)ak1,1 · · · akn−1,n−1an,n = annMnn = annAnn.

假设 A 的第 j 列除了 aij 都是零. 依次对 A 实施
ri ↔ ri+1, ri+1 ↔ ri+2, . . . , rn−1 ↔ rn,

得到的方阵 B 就是将 A 的第 i 行移动到第 n 行的后面得到的方阵. 由于一共 n− i 次
列互换, 因此 |B| = (−1)n−i|A|.
同理, 将 B 的第 j 列移动到第 n 列的后面得到的方阵记为 C, 则

|C| = (−1)n−j |B| = (−1)i+j |A|.

注意到 C 在 (n, n) 处元素是 aij , 余子式是 Mij , 因此
|C| = aijMij , |A| = (−1)i+jaijMij = aijAij .

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶C 拉普拉斯展开
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行列式与余子式的联系

将 A 的第 j 列写成
a1j

a2j
...

anj

 =


a1j

0
...
0

+


0

a2j
...
0

+ · · ·+


0
0
...

anj

 ,

根据行列式的线性性质, 我们得到

|A| = a1jA1j + a2jA2j + · · ·+ anjAnj .

由于转置不改变方阵的行列式, 于是得到

|A| = ai1Ai1 + ai2Ai2 + · · ·+ ainAin.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶C 拉普拉斯展开
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拉普拉斯展开

定理 (行列式沿任一行或列展开). 方阵的行列式等于任一行 (列) 的元素与其对应的代数
余子式乘积的和:

|A| = ai1Ai1 + ai2Ai2 + · · ·+ ainAin

= a1jA1j + a2jA2j + · · ·+ anjAnj .

由此也可以看出 i 6= k 时,

ai1Ak1 + ai2Ak2 + · · ·+ ainAkn = 0,

因为它是第 i, k 行相同的方阵的行列式.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶C 拉普拉斯展开
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 75 / 166



拉普拉斯展开

定理 (行列式沿任一行或列展开). 方阵的行列式等于任一行 (列) 的元素与其对应的代数
余子式乘积的和:

|A| = ai1Ai1 + ai2Ai2 + · · ·+ ainAin

= a1jA1j + a2jA2j + · · ·+ anjAnj .

由此也可以看出 i 6= k 时,

ai1Ak1 + ai2Ak2 + · · ·+ ainAkn = 0,

因为它是第 i, k 行相同的方阵的行列式.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶C 拉普拉斯展开
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 75 / 166



拉普拉斯展开

定理 (行列式沿任一行或列展开). 方阵的行列式等于任一行 (列) 的元素与其对应的代数
余子式乘积的和:

|A| = ai1Ai1 + ai2Ai2 + · · ·+ ainAin

= a1jA1j + a2jA2j + · · ·+ anjAnj .

由此也可以看出 i 6= k 时,

ai1Ak1 + ai2Ak2 + · · ·+ ainAkn = 0,

因为它是第 i, k 行相同的方阵的行列式.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶C 拉普拉斯展开
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 75 / 166



例: 三角阵的行列式

例. ∣∣∣∣∣∣∣∣∣∣
a11
a21 a22
...

... . . .
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣

= a11

∣∣∣∣∣∣∣
a22
... . . .

an2 · · · ann

∣∣∣∣∣∣∣ = a11a22

∣∣∣∣∣∣∣
a33
... . . .

an3 · · · ann

∣∣∣∣∣∣∣
= · · · = a11a22 · · · ann.

由于转置不改变行列式, 因此上三角阵行列式也等于对角元乘积.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶C 拉普拉斯展开
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 76 / 166
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例: 反对角阵的行列式

例. 计算 |A|, 其中 A =


a1

a2
. . .

an

.

解答.

|A| = (−1)n+1a1

∣∣∣∣∣∣∣
a2

. . .

an

∣∣∣∣∣∣∣

= (−1)n+1a1 · (−1)na2

∣∣∣∣∣∣∣
a3

. . .

an

∣∣∣∣∣∣∣
= · · · =

n∏
i=1

(−1)n−iai = (−1)
n(n−1)

2 a1a2 · · · an.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶C 拉普拉斯展开
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例: 利用初等变换计算行列式

对于具体的方阵, 我们可以利用初等变换将其化为三角阵来计算行列式.

也可以在某
一行或一列只有少数非零元时用拉普拉斯展开来降阶.

例. ∣∣∣∣∣∣∣∣∣
2 3 1 −1
−4 −5 1 3
−3 1 −5 3
1 −2 0 −1

∣∣∣∣∣∣∣∣∣

r2 + 4r4
r3 + 3r4========
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例: 利用初等变换计算行列式

练习.

(1)

∣∣∣∣∣∣∣
−2 0 1
501 200 299
500 200 300

∣∣∣∣∣∣∣ =

−200

.

(2)

∣∣∣∣∣∣∣
1 1 1
a b c

b + c c + a a + b

∣∣∣∣∣∣∣ =

0

.

(3) 设 α = (1, 0,−1), A = αTα, 则 |5E −A3| =

−75

.

回忆: 若 A = αβT, 则 Ak = λk−1A, 其中 k = βTα.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶C 拉普拉斯展开
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例: 分块矩阵行列式

例. 设

A =

a11 · · · a1m
... . . . ...

am1 · · · amm

 , B =

b11 · · · b1n
... . . . ...

bn1 · · · bnn

 ,

C =



a11 · · · a1m

... . . . ... 0
am1 · · · amm

∗ · · · ∗ b11 · · · b1n

... . . . ...
... . . . ...

∗ · · · ∗ bn1 · · · bnn


.

证明 |C| = |A| · |B|.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶C 拉普拉斯展开
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例: 分块矩阵行列式

证明. 对 m 归纳.

当 m = 1 时将 |C| 沿第一行展开可知成立.
假设命题对于 m− 1 成立. 设 A 在 (1, j) 处的余子式为 M1j , C 在 (1, j) 处的余子式为

N1j . 则由归纳假设 N1j = M1j |B|. 因此

|C| =
m∑

j=1
(−1)1+ja1jN1j

=
m∑

j=1
(−1)1+ja1jM1j |B| = |A| · |B|.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶C 拉普拉斯展开
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例: 拉普拉斯展开的应用

例. 设 A =


3 0 4 0
2 2 2 2
0 −7 0 0
5 3 −2 2

. 计算 A41 + A42 + A43 + A44 和 M41 + M42 + M43 + M44.

解答. 由拉普拉斯展开可知

A41 + A42 + A43 + A44 =

∣∣∣∣∣∣∣∣∣
3 0 4 0
2 2 2 2
0 −7 0 0
1 1 1 1

∣∣∣∣∣∣∣∣∣ = 0.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶C 拉普拉斯展开
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例: 拉普拉斯展开的应用

续解.
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∣∣∣∣∣∣∣∣∣
3 0 4 0
2 2 2 2
0 −7 0 0
−1 1 −1 1

∣∣∣∣∣∣∣∣∣

= 7

∣∣∣∣∣∣∣
3 4 0
2 2 2
−1 −1 1

∣∣∣∣∣∣∣ = −28.

练习. 若 A =


a1 a2 a3 f
b1 b2 b3 f
c1 c2 c3 f
d1 d2 d3 f

, 则 A11 + A21 + A31 + A41 =

0

.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶C 拉普拉斯展开
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 83 / 166
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例: 行和为常数的行列式

计算 n 阶矩阵的行列式可以使用初等变换将其变为三角型, 也可以使用拉普拉斯展
开来对其实施降阶.

例. ∣∣∣∣∣∣∣∣∣∣
a 1 · · · 1
1 a · · · 1
...

... . . . ...
1 1 · · · a

∣∣∣∣∣∣∣∣∣∣

c1 + ci=======
i ⩾ 2

∣∣∣∣∣∣∣∣∣∣
a + n− 1 1 · · · 1
a + n− 1 a · · · 1

...
... . . . ...

a + n− 1 1 · · · a

∣∣∣∣∣∣∣∣∣∣
= (a + n− 1)

∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1
1 a · · · 1
...

... . . . ...
1 1 · · · a

∣∣∣∣∣∣∣∣∣∣
ri − r1=======
i ⩾ 2

(a + n− 1)

∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1
0 a− 1 · · · 0
...

... . . . ...
0 0 · · · a− 1

∣∣∣∣∣∣∣∣∣∣
= (a + n− 1)(a− 1)n−1.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶D 行列式的计算举例
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 84 / 166
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例: 行和为常数的行列式

若方阵的每行 (列) 之和为常数, 可用此法化简.

练习. 计算 n 阶行列式

∣∣∣∣∣∣∣∣∣∣
1 + a1 a2 · · · an

a1 1 + a2 · · · an
...

... . . . ...
a1 a2 · · · 1 + an

∣∣∣∣∣∣∣∣∣∣
=

1 + a1 + · · ·+ an

.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶D 行列式的计算举例
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 85 / 166
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∣∣∣∣∣∣∣∣∣∣
= 1 + a1 + · · ·+ an .

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶D 行列式的计算举例
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例: 箭形行列式

例. ∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1
1 2 · · · 0
...

... . . . ...
1 0 · · · n

∣∣∣∣∣∣∣∣∣∣

c1 −
1
i
ci

========
i ⩾ 2

∣∣∣∣∣∣∣∣∣∣∣

1− 1
2
− · · · − 1

n
1 · · · 1

0 2 · · · 0
...

... . . . ...
0 0 · · · n

∣∣∣∣∣∣∣∣∣∣∣
=
(
1− 1

2
− · · · − 1

n

)
n!.

一般的箭形行列式均可用此法处理.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶D 行列式的计算举例
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例: 特殊形状行列式

练习. 计算 n 阶行列式

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 · · · n− 1 n
−1 0 3 · · · n− 1 n
−1 −2 0 · · · n− 1 n
...

...
...

. . .
...

...
−1 −2 −3 · · · 0 n
−1 −2 −3 · · · −(n− 1) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

n!

.

答案. 对该方阵实施 ri + r1, i ⩾ 2 即可化为上三角阵.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶D 行列式的计算举例
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 87 / 166
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例: 降阶法

例. 计算矩阵 An =



x −1 0 · · · 0 0
0 x −1 · · · 0 0
0 0 x · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · x −1
an an−1 an−2 · · · a2 x + a1


的行列式.

解答. 沿着第一列展开得到
|An| = x|An−1|+ (−1)1+nan(−1)n−1 = x|An−1|+ an,

递推或归纳可知

|An| = x(x|An−2|+ an−1) + an = · · · = xn + a1xn−1 + a2xn−2 + · · ·+ an.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶D 行列式的计算举例
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 88 / 166
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例: 降阶法计算三对角矩阵行列式

例. 计算矩阵 An =



2 1 0 · · · 0 0
1 2 1 · · · 0 0
0 1 2 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 2 1
0 0 0 · · · 1 2


的行列式.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶E 三对角和范德蒙型行列式
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 89 / 166



例: 降阶法计算三对角矩阵行列式

解答. 设 Dn = |An|.

沿着第一行展开得到

|An| = 2|An−1| −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 · · · 0 0
0 2 1 · · · 0 0
0 1 2 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 2 1
0 0 0 · · · 1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n−1

= 2|An−1| − |An−2|,

因此
|An| − |An−1| = |An−1| − |An−2| = · · · = |A2| − |A1| = 1,

从而 |An| = n− 1 + |A1| = n + 1.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶E 三对角和范德蒙型行列式
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 90 / 166
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例: 降阶法计算三对角矩阵行列式

若主对角线元素均为 a, 上下副对角线元素均为 b 和 c, 则

|An| − a|An−1|+ bc|An−2| = 0.

设 λ2 − aλ + bc = 0 的两个根为 λ1, λ2, 则归纳可知

|An| = λn
1 + λn−1

1 λ2 + · · ·+ λ1λn−1
2 + λn

2

=


λn+1

1 − λn+1
2

λ1 − λ2
, 若 λ1 6= λ2;

(n + 1)
(a

2

)n
, 若 λ1 = λ2 = a

2
.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶E 三对角和范德蒙型行列式
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 91 / 166
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例: 范德蒙行列式

范德蒙行列式设 An =


1 1 1 · · · 1
x1 x2 x3 · · · xn

x2
1 x2

2 x2
3 · · · x2

n
...

...
... . . . ...

xn−1
1 xn−1

2 xn−1
3 · · · xn−1

n

. 证明 |An| =
∏

1⩽i<j⩽n
(xj −xi).

证明. 归纳证明.

当 n = 1, 2 时显然成立. 设 n ⩾ 3, 由 rn − x1rn−1, . . . , r2 − x1r1 得到

|An| =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
0 x2 − x1 x3 − x1 · · · xn − x1
0 x2(x2 − x1) x3(x3 − x1) · · · xn(xn − x1)
...

...
... . . . ...

0 xn−2
2 (x2 − x1) xn−2

3 (x3 − x1) · · · xn−2
n (xn − x1)

∣∣∣∣∣∣∣∣∣∣∣∣
.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶E 三对角和范德蒙型行列式
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例: 范德蒙行列式
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n
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∏
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例: 范德蒙行列式

续证.

沿着第一列展开, 然后提取每一列的公因式 (xj − x1) 得到

|An| =
n∏

j=2
(xj − x1)

∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1
x2 x3 · · · xn
...

... . . . ...
xn−1

2 xn−1
3 · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣
.

由归纳假设可知

|An| =
n∏

j=2
(xj − x1) ·

∏
2⩽i<j⩽n

(xj − xi) =
∏

1⩽i<j⩽n

(xj − xi).
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例: 范德蒙行列式的应用

练习.

(1)

∣∣∣∣∣∣∣∣∣
x−3

1 x−3
2 x−3

3 x−3
4

x−1
1 x−1

2 x−1
3 x−1

4
x1 x2 x3 x4
x3

1 x3
2 x3

3 x3
4

∣∣∣∣∣∣∣∣∣ =

x−3
1 x−3

2 x−3
3 x−3

4
∏

1⩽i<j⩽4
(x2

j − x2
i )

.

(2)

∣∣∣∣∣∣∣∣∣
1 1 1 1
1 2 3 4
1 4 9 16
1 8 27 65

∣∣∣∣∣∣∣∣∣ =

14

.

=

∣∣∣∣∣∣∣∣∣
1 1 1 1
1 2 3 4
1 4 9 16
1 8 27 64

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
1 1 1 1
1 2 3 4
1 4 9 16
0 0 0 1

∣∣∣∣∣∣∣∣∣

(3) 设 a, b, c 两两不等, 且

∣∣∣∣∣∣∣
a b c
a2 b2 c2

b + c c + a a + b

∣∣∣∣∣∣∣ = 0, 则 a + b + c =

0

.
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例: 范德蒙行列式 非考试内容

范德蒙行列式还有另一种证明方式, 这种思路对于其它行列式的计算也有帮助.

证明. f = |An| 是 x1, . . . , xn 的多项式, 且次数不超过 1 + 2 + · · · + (n − 1).

由于当
xi = xj 时 f = 0, 因此 f 包含因式 xi − xj , 从而

f = g
∏

1⩽i<j⩽n

(xj − xi).

比较两边次数可知 g 是常数. 注意到
n∏

i=1
xi−1

i 只出现在范德蒙行列式对角元的乘积中, 且

它在
∏

1⩽i<j⩽n
(xj − xi) 中的系数是 1. 因此 g = 1.
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特殊形状行列式 非考试内容

例. 计算

∣∣∣∣∣∣∣∣∣∣
150 250 · · · 10050

250 350 · · · 10150

...
... . . . ...

10050 10150 · · · 19950

∣∣∣∣∣∣∣∣∣∣
.

证明. 将第一行换成 (x + 1)50, . . . , (x + 100)50, 并将行列式记为 f(x).

那么 f(1) = · · · =
f(99) = 0. 注意到 f 的次数不超过 50, 因此 f ≡ 0.

同理若 k < n− 1,
∣∣∣((ai + bj)k

)
1⩽i,j⩽n

∣∣∣ = 0.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶E 三对角和范德蒙型行列式
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行列式常见计算方法总结

(1) 2, 3 阶行列式可用对角线法直接展开.

(2) 三角阵行列式等于对角元的乘积, 分块三角阵行列式等于对角阵行列式乘积.
(3) 行列式的计算一般需要用到三类初等变换, 创造出足够多的零.
(4) 行列式沿一行 (列) 的展开往往是降阶法的必要手段.
(5) 范德蒙型行列式可处理方阵为元素幂次递增的情形.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶E 三对角和范德蒙型行列式
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 97 / 166



行列式常见计算方法总结

(1) 2, 3 阶行列式可用对角线法直接展开.
(2) 三角阵行列式等于对角元的乘积, 分块三角阵行列式等于对角阵行列式乘积.

(3) 行列式的计算一般需要用到三类初等变换, 创造出足够多的零.
(4) 行列式沿一行 (列) 的展开往往是降阶法的必要手段.
(5) 范德蒙型行列式可处理方阵为元素幂次递增的情形.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶E 三对角和范德蒙型行列式
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 97 / 166



行列式常见计算方法总结

(1) 2, 3 阶行列式可用对角线法直接展开.
(2) 三角阵行列式等于对角元的乘积, 分块三角阵行列式等于对角阵行列式乘积.
(3) 行列式的计算一般需要用到三类初等变换, 创造出足够多的零.

(4) 行列式沿一行 (列) 的展开往往是降阶法的必要手段.
(5) 范德蒙型行列式可处理方阵为元素幂次递增的情形.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶E 三对角和范德蒙型行列式
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 97 / 166



行列式常见计算方法总结

(1) 2, 3 阶行列式可用对角线法直接展开.
(2) 三角阵行列式等于对角元的乘积, 分块三角阵行列式等于对角阵行列式乘积.
(3) 行列式的计算一般需要用到三类初等变换, 创造出足够多的零.
(4) 行列式沿一行 (列) 的展开往往是降阶法的必要手段.

(5) 范德蒙型行列式可处理方阵为元素幂次递增的情形.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶E 三对角和范德蒙型行列式
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 97 / 166



行列式常见计算方法总结

(1) 2, 3 阶行列式可用对角线法直接展开.
(2) 三角阵行列式等于对角元的乘积, 分块三角阵行列式等于对角阵行列式乘积.
(3) 行列式的计算一般需要用到三类初等变换, 创造出足够多的零.
(4) 行列式沿一行 (列) 的展开往往是降阶法的必要手段.
(5) 范德蒙型行列式可处理方阵为元素幂次递增的情形.

线性代数 ▶第一章 向量和矩阵 ▶ 3 方阵的行列式 ▶E 三对角和范德蒙型行列式
⊞□□□□□□□⊞□□□□□□□□□□⊞□□□□□□□□□□□⊞□□□□⊞□□□□□□□□ 97 / 166



第四节 逆矩阵
方阵的伴随矩阵

逆矩阵的定义和形式

逆矩阵的性质

克拉默法则

逆矩阵的应用



伴随矩阵的定义

定义. 设 A = (aij) 为 n ⩾ 2 阶方阵. 由 A 的代数余子式形成的 n 阶方阵

A∗ = (Aji) =


A11 A21 · · · An1
A12 A22 · · · An2

...
... . . . ...

A1n A2n · · · Ann


称为 A 的伴随矩阵.

注意, 伴随矩阵的 (i, j) 元是代数余子式 Aji 而不是 Aij .

A∗ 对应的线性变换是 A 对应的线性变换 Rn → Rn 诱导的 n− 1 次外代数的对偶
空间上的线性变换

(
∧n−1Rn

)∗
→
(
∧n−1Rn

)∗
, 感兴趣的可自行阅读有关材料.

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶A 方阵的伴随矩阵
⊞□□□□⊞□□□□□□□□⊞□□□□□□⊞□□□□□□□⊞□ 98 / 166
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伴随矩阵的性质

例. 若 A =
(

a b
c d

)
, 则 A∗ =

(
d −b
−c a

)
.

伴随矩阵满足如下性质:

(1) AA∗ = A∗A = |A|En.

这是因为

AA∗ =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
an1 an2 · · · ann




A11 A21 · · · An1
A12 A22 · · · An2

...
... . . . ...

A1n A2n · · · Ann


的 (i, j) 元是 ai1Aj1 + · · ·+ ainAjn =

{
|A|, i = j;
0, i 6= j.
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伴随矩阵的性质

(2) (kA)∗ = kn−1A∗.
(3) (AT)∗ = (A∗)T.
(4) |A∗| = |A|n−1.

若 |A| 6= 0, 由 |A∗| · |A| = |A∗A| =
∣∣|A|En

∣∣ = |A|n 可得.

若 |A| = 0, 则
AA∗(A∗)∗ = |A|(A∗)∗ = O

= |A∗|A,

于是 |A∗| = 0 或 A = O, A∗ = O. 故 |A∗| = 0.
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伴随矩阵的伴随

(5) (A∗)∗ =
{

A, n = 2;
|A|n−2A, n ⩾ 3.

容易知道, 2 阶方阵满足 (A∗)∗ = A. 若 A 是 n ⩾ 3 阶方阵且 |A| 6= 0, 则由

AA∗(A∗)∗ = |A|(A∗)∗ = |A∗|A

可知
(A∗)∗ = |A

∗|
|A|

A = |A|n−2A.

若 A 是 n ⩾ 3 阶方阵且 |A| = 0, 我们会在 §2.4 证明 (A∗)∗ = O.

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶A 方阵的伴随矩阵
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例: 伴随矩阵的性质

例. 设非零 n ⩾ 3 实方阵 A 满足对任意 i, j, aij = Aij . 求 |A|.

解答. 由题设可知 A∗ = AT.

因此 |A| = |A∗| = |A|n−1, |A| = 0, 1 或 −1.
注意 AAT = AA∗ = |A|E 的第 i 个对角元

n∑
k=1

a2
ik ⩾ 0.

因此 |A| ⩾ 0. 若 |A| = 0, 则所有的 aik = 0, A = O, 矛盾! 因此 |A| = 1.

事实上, A 是正交阵, 即满足 ATA = E 的实方阵.

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶A 方阵的伴随矩阵
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注意 AAT = AA∗ = |A|E 的第 i 个对角元

n∑
k=1

a2
ik ⩾ 0.

因此 |A| ⩾ 0. 若 |A| = 0, 则所有的 aik = 0, A = O, 矛盾! 因此 |A| = 1.

事实上, A 是正交阵, 即满足 ATA = E 的实方阵.

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶A 方阵的伴随矩阵
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线性变换的逆 非考试内容

给定一个线性变换 f : Rn → Rm, 若线性变换 g : Rm → Rn 满足

(gf)(x) = x,∀x ∈ Rn, (fg)(y) = y,∀y ∈ Rm,

则称 g 是 f 的逆.

设 f, g 对应的矩阵分别是 A, B, 则

AB = Em, BA = En.

由于 m > n 时 |AB| = 0; m < n 时 |BA| = 0. 因此线性变换的逆只可能在 m = n 时存
在.

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶B 逆矩阵的定义和形式
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逆矩阵的定义和唯一性

由此得到对应的矩阵的逆的定义:

定义. 设 A 是 n 阶方阵. 若存在 n 阶方阵 B 使得

AB = BA = En,

则称 A 是可逆矩阵, B 是 A 的逆矩阵.

可逆矩阵的逆矩阵唯一吗? 设 B, B′ 都是 A 的逆矩阵, 则

AB = En, B′A = En.

于是
B = (B′A)B = B′(AB) = B′.

因此若逆矩阵存在必唯一, 记为 A−1.

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶B 逆矩阵的定义和形式
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逆矩阵存在性的刻画

若 A 可逆, 从 AA−1 = E 可知 |A| · |A−1| = 1.

从而 |A| 6= 0.

反之, 若 |A| 6= 0, 则

AA∗ = A∗A = |A|E,

A · 1
|A|

A∗ = 1
|A|

A∗ ·A = E, A−1 = 1
|A|

A∗.

逆矩阵的存在性和形式. n 阶方阵 A 可逆当且仅当 |A| 6= 0. 此时 A−1 = 1
|A|

A∗.

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶B 逆矩阵的定义和形式
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逆矩阵存在性的刻画

推论. 设 A, B 为 n 阶方阵. 若 AB = E (或 BA = E), 则 B = A−1.

证明. 若 AB = E, 则 |A| · |B| = 1, |A| 6= 0.

因此 A 可逆.

A−1 = A−1(AB) = B.

行列式为零的方阵也叫退化方阵.

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶B 逆矩阵的定义和形式
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例: 计算逆矩阵

例. 证明 A =
(

cos θ − sin θ
sin θ cos θ

)
可逆并求其逆矩阵.

解答. 由于 |A| = cos2 θ + sin2 θ = 1, 因此 A 可逆.

由于 A∗ =
(

cos θ sin θ
− sin θ cos θ

)
, 因此

A−1 = 1
|A|

A∗ =
(

cos θ sin θ
− sin θ cos θ

)
.

注意到 A 对应的是平面上沿原点逆时针旋转 θ, 因此 A−1 对应的是平面上沿原点逆
时针旋转 −θ.
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例: 计算逆矩阵

例. A =

 1 2 1
0 1 −1
−1 3 4

 , B =

 2 7 −2
−1 −3 5
1 5 11

 是否可逆? 若可逆求其逆矩阵.

解答. 由于 |A| r3 + r1=======

∣∣∣∣∣∣
1 2 1
0 1 −1
0 5 5

∣∣∣∣∣∣ = 10, 因此 A 可逆,

A−1 = 1
10

A∗ = 1
10

A11 A21 A31
A12 A22 A32
A13 A23 A33



= 1
10

7 −5 −3
1 5 1
1 −5 1

 .

由于 |B| c3 − 11c1=========
c2 − 5c1

∣∣∣∣∣∣
2 −3 −24
−1 2 16
1 0 0

∣∣∣∣∣∣ =
∣∣∣∣−3 −24

2 16

∣∣∣∣ = 0, 因此 B 不可逆.
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例: 计算逆矩阵

例. 设 λ1, . . . , λn 6= 0,
Λ = diag(λ1, λ2, . . . , λn),

则
Λ−1 = diag(λ−1

1 , λ−1
2 , . . . , λ−1

n ).

通过计算伴随矩阵还可知道, 行列式非零的上 (下) 三角阵的逆也是上 (下) 三角的,且二者
对角元对应元素互为逆.
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逆矩阵的计算方法

逆矩阵通常采用下述方法计算:

(1) 利用公式 A−1 = 1
|A|

A∗, 适用于 2, 3 阶方阵, 或用于抽象分析.

(2) 寻找方阵 B 使得 AB = E, 适用于抽象矩阵求逆.
(3) 利用矩阵的初等变换求逆矩阵, 该方法我们会在下一节中学习.

例. 设 A 为 n 阶方阵且满足 A2 + 3A− 2E = O. 求 A−1 和 (A−E)−1.

解答.

(1) 由于 A2 + 3A = 2E,

因此 A(A + 3E) = 2E, A−1 = 1
2

(A + 3E).

(2) 由于 (A−E)(A + 4E) = −2E,

因此 (A−E)−1 = −1
2

(A + 4E).

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶B 逆矩阵的定义和形式
⊞□□□□⊞□□□□□□□□⊞□□□□□□⊞□□□□□□□⊞□ 110 / 166
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例. 设 A 为 n 阶方阵且满足 A2 + 3A− 2E = O. 求 A−1 和 (A−E)−1.

解答.

(1) 由于 A2 + 3A = 2E, 因此 A(A + 3E) = 2E, A−1 = 1
2

(A + 3E).

(2) 由于 (A−E)(A + 4E) = −2E,

因此 (A−E)−1 = −1
2

(A + 4E).

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶B 逆矩阵的定义和形式
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方阵的多项式

设 f(x) 是一多项式, f(A) = O, 我们想求 (A− aE)−1.

注意到

xk − ak

x− a
= xk−1 + axk−2 + · · ·+ ak−1

是一个多项式, 因此存在多项式 g(x) = f(x)− f(a)
x− a

. 于是

f(x)− f(a) = (x− a)g(x),

f(A)− f(a)E = (A− aE)g(A).

从而当 f(a) 6= 0 时, (A− aE)−1 = − 1
f(a)

g(A).

当 f(a) = 0 时, A− aE 未必可逆.
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逆矩阵的性质

逆矩阵满足如下性质:

(1) 设 A 可逆, λ 6= 0.

• |A−1| = |A|−1;
• A−1 可逆, 且 (A−1)−1 = A;
• λA 可逆, 且 (λA)−1 = 1

λ
A−1;

• AT 可逆, 且 (AT)−1 = (A−1)T;
• A∗ 可逆, 且 (A∗)−1 = (A−1)∗ = 1

|A|
A.

由于 AA∗ = |A|E, 因此 A∗ = |A|A−1. 于是

(A−1)∗ = |A−1|(A−1)−1 = 1
|A|

A,

(A∗)−1 = (|A|A−1)−1 = 1
|A|

A.
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伴随矩阵和逆矩阵

(2) 若 A, B 为同阶可逆矩阵, 则 AB 也可逆, 且

(AB)−1 = B−1A−1.

一般地
(A1A2 · · ·An)−1 = A−1

n · · ·A−1
2 A−1

1 .

注意矩阵不能相除 A

B
, 因为一般 B−1A 6= AB−1.

一般地, (A + B)−1 6= A−1 + B−1. 例如 A =
(

1 0
0 −1

)
, B =

(
1 0
0 1

)
均可逆, 但

A + B =
(

2 0
0 0

)
不可逆.
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例: 逆矩阵的性质

例. 多选题: 若 A, B, C 为同阶方阵, 且 A 可逆, 则(

AC

).
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4 1 3
4 a 7
3 −1 4

, 且存在矩阵 B 6= C 使得 AB = AC, 则 a =

−3

.

(2) 若 A 为 n 阶方阵, 则下面命题正确的有

1

个.

A−1 = 1
|A|

A∗;(i) A∗ = |A|A−1;(ii) |A∗| = |A|n−1.(iii)
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例: 逆矩阵的性质

例. 设 A 是 n 阶方阵, 若(

D

), 则 A−E 可逆.

A 可逆(A) |A| = 0(B)
A 的主对角线元素均为 0(C) 存在某个正整数 m 使得 Am = O(D)

练习.

(1) 设 3 阶方阵 A 满足 A3 − 2A + E = O, 且 |A| = 2, 则 |(A2 − 2E)−1| =

−2

.
(2) 设 n 阶方阵 A, B, C 满足 ABC = E, 则(

D

).

ACB = E(A) CBA = E(B) BAC = E(C) CAB = E(D)

想一想 B−1 =?

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶C 逆矩阵的性质
⊞□□□□⊞□□□□□□□□⊞□□□□□□⊞□□□□□□□⊞□ 115 / 166



例: 逆矩阵的性质

例. 设 A 是 n 阶方阵, 若( D ), 则 A−E 可逆.

A 可逆(A) |A| = 0(B)
A 的主对角线元素均为 0(C) 存在某个正整数 m 使得 Am = O(D)

练习.

(1) 设 3 阶方阵 A 满足 A3 − 2A + E = O, 且 |A| = 2, 则 |(A2 − 2E)−1| =

−2

.
(2) 设 n 阶方阵 A, B, C 满足 ABC = E, 则(

D

).

ACB = E(A) CBA = E(B) BAC = E(C) CAB = E(D)

想一想 B−1 =?

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶C 逆矩阵的性质
⊞□□□□⊞□□□□□□□□⊞□□□□□□⊞□□□□□□□⊞□ 115 / 166



例: 逆矩阵的性质

例. 设 A 是 n 阶方阵, 若( D ), 则 A−E 可逆.

A 可逆(A) |A| = 0(B)
A 的主对角线元素均为 0(C) 存在某个正整数 m 使得 Am = O(D)

练习.

(1) 设 3 阶方阵 A 满足 A3 − 2A + E = O, 且 |A| = 2, 则 |(A2 − 2E)−1| =

−2

.
(2) 设 n 阶方阵 A, B, C 满足 ABC = E, 则(

D

).

ACB = E(A) CBA = E(B) BAC = E(C) CAB = E(D)

想一想 B−1 =?

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶C 逆矩阵的性质
⊞□□□□⊞□□□□□□□□⊞□□□□□□⊞□□□□□□□⊞□ 115 / 166



例: 逆矩阵的性质

例. 设 A 是 n 阶方阵, 若( D ), 则 A−E 可逆.

A 可逆(A) |A| = 0(B)
A 的主对角线元素均为 0(C) 存在某个正整数 m 使得 Am = O(D)

练习.
(1) 设 3 阶方阵 A 满足 A3 − 2A + E = O, 且 |A| = 2, 则 |(A2 − 2E)−1| =

−2

.

(2) 设 n 阶方阵 A, B, C 满足 ABC = E, 则(

D

).

ACB = E(A) CBA = E(B) BAC = E(C) CAB = E(D)

想一想 B−1 =?

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶C 逆矩阵的性质
⊞□□□□⊞□□□□□□□□⊞□□□□□□⊞□□□□□□□⊞□ 115 / 166



例: 逆矩阵的性质

例. 设 A 是 n 阶方阵, 若( D ), 则 A−E 可逆.

A 可逆(A) |A| = 0(B)
A 的主对角线元素均为 0(C) 存在某个正整数 m 使得 Am = O(D)

练习.
(1) 设 3 阶方阵 A 满足 A3 − 2A + E = O, 且 |A| = 2, 则 |(A2 − 2E)−1| = −2 .

(2) 设 n 阶方阵 A, B, C 满足 ABC = E, 则(

D

).

ACB = E(A) CBA = E(B) BAC = E(C) CAB = E(D)

想一想 B−1 =?

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶C 逆矩阵的性质
⊞□□□□⊞□□□□□□□□⊞□□□□□□⊞□□□□□□□⊞□ 115 / 166



例: 逆矩阵的性质

例. 设 A 是 n 阶方阵, 若( D ), 则 A−E 可逆.

A 可逆(A) |A| = 0(B)
A 的主对角线元素均为 0(C) 存在某个正整数 m 使得 Am = O(D)

练习.
(1) 设 3 阶方阵 A 满足 A3 − 2A + E = O, 且 |A| = 2, 则 |(A2 − 2E)−1| = −2 .
(2) 设 n 阶方阵 A, B, C 满足 ABC = E, 则(

D

).

ACB = E(A) CBA = E(B) BAC = E(C) CAB = E(D)

想一想 B−1 =?

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶C 逆矩阵的性质
⊞□□□□⊞□□□□□□□□⊞□□□□□□⊞□□□□□□□⊞□ 115 / 166



例: 逆矩阵的性质

例. 设 A 是 n 阶方阵, 若( D ), 则 A−E 可逆.

A 可逆(A) |A| = 0(B)
A 的主对角线元素均为 0(C) 存在某个正整数 m 使得 Am = O(D)

练习.
(1) 设 3 阶方阵 A 满足 A3 − 2A + E = O, 且 |A| = 2, 则 |(A2 − 2E)−1| = −2 .
(2) 设 n 阶方阵 A, B, C 满足 ABC = E, 则( D ).

ACB = E(A) CBA = E(B) BAC = E(C) CAB = E(D)

想一想 B−1 =?

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶C 逆矩阵的性质
⊞□□□□⊞□□□□□□□□⊞□□□□□□⊞□□□□□□□⊞□ 115 / 166



例: 逆矩阵的性质

例. 设 A 是 n 阶方阵, 若( D ), 则 A−E 可逆.

A 可逆(A) |A| = 0(B)
A 的主对角线元素均为 0(C) 存在某个正整数 m 使得 Am = O(D)

练习.
(1) 设 3 阶方阵 A 满足 A3 − 2A + E = O, 且 |A| = 2, 则 |(A2 − 2E)−1| = −2 .
(2) 设 n 阶方阵 A, B, C 满足 ABC = E, 则( D ).

ACB = E(A) CBA = E(B) BAC = E(C) CAB = E(D)

想一想 B−1 =?

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶C 逆矩阵的性质
⊞□□□□⊞□□□□□□□□⊞□□□□□□⊞□□□□□□□⊞□ 115 / 166



例: 逆矩阵的性质

例. 设 A 是 3 阶方阵, |A| = 1
2

. 求
∣∣(2A)−1 − (2A)∗∣∣.

解答.
(2A)−1 − (2A)∗ = 1

2
A−1 − 22A∗ = A∗ − 4A∗ = −3A∗,

因此 ∣∣(2A)−1 − (2A)∗∣∣ = −27|A∗| = −27|A|2 = −27
4

.

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶C 逆矩阵的性质
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例: 逆矩阵计算方阵的幂

例. 设 P =
(

1 2
1 4

)
, Λ =

(
1

2

)
, 求 (P ΛP −1)n.

解答. |P | = 2, P −1 = 1
2

(
4 −2
−1 1

)
,

(P ΛP −1)n = P ΛP −1 · P ΛP −1 · · ·P ΛP −1 = P ΛnP −1

= 1
2

(
1 2
1 4

)(
1

2n

)(
4 −2
−1 1

)
=
(

2− 2n 2n − 1
2− 2n+1 2n+1 − 1

)
.

由此可知, 对于多项式 f(x), f(P AP −1) = P f(A)P −1.

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶C 逆矩阵的性质
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例: 矩阵乘积的伴随

例. 证明 (AB)∗ = B∗A∗.

证明. 若 A, B 均可逆, 则

(AB)∗ = |AB|(AB)−1 = |A| · |B|B−1A−1 = A∗B∗.

一般情形下, 注意到 |xE + A| 展开式包含 xn 项, 所以它是 x 的多项式. 由此可知存在
无穷多 x 使得 xE + A, xE + B 均可逆.
设 f(x), g(x) 分别为

(
(xE + A)(xE + B)

)∗
和 (xE + B)∗(xE + A)∗ 的 (i, j) 元, 那么

f(x) = g(x) 对无穷多 x 成立. 而 f, g 均是 x 的多项式, 这迫使 f = g, f(0) = g(0). 故
(AB)∗ = B∗A∗.

伴随、逆、转置相互可交换, 且均满足此种性质.

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶C 逆矩阵的性质
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克拉默法则

克拉默法则. 设 A 是 n 阶方阵, b = (b1, . . . , bn)T 是 n 维列向量, 将 A 的第 j 列换成 b
得到的方阵记为 Aj. 当 |A| 6= 0, 线性方程组 Ax = b 有唯一解

x =
( |A1|
|A|

,
|A2|
|A|

, . . . ,
|An|
|A|

)
.

证明. 显然唯一解就是 x = A−1b = 1
|A|

A∗b.

由于方阵 Aj 沿着第 j 列展开得到

|Aj | = b1A1j + b2A2j + · · ·+ bnAnj = (A1j , A2j , . . . , Anj)b.

因此 A∗b = (|A1|, . . . , |An|)T, 从而 x 具有题述形式.

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶D 克拉默法则
⊞□□□□⊞□□□□□□□□⊞□□□□□□⊞□□□□□□□⊞□ 119 / 166
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线性方程组的解

定理. 设 A 是 n 阶方阵, Ax = b 有唯一解当且仅当 |A| 6= 0.

因此行列式起到了线性方程组的 ‘‘判别式’’ 的作用. 我们将在 §1.6 证明该结论.

若线性方程组的常数都是零, 即 Ax = 0 或
a11 x1 + a12 x2 + · · ·+ a1n xn = 0
a21 x1 + a22 x2 + · · ·+ a2n xn = 0

...
am1x1 + an2x2 + · · ·+ amnxn = 0

称之为齐次线性方程组. 否则称之为非齐次线性方程组.

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶D 克拉默法则
⊞□□□□⊞□□□□□□□□⊞□□□□□□⊞□□□□□□□⊞□ 120 / 166
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线性方程组的解

对于齐次线性方程组 Ax = 0, 令

V = {x | Ax = 0}

表示该方程的所有解形成的集合.

显然 0 ∈ V . 若 u, v ∈ V , 则 Au = Av = 0. 于是

A(u + v) = A(λv) = 0, ∀λ ∈ R.

换言之, 从而 V 构成一个线性空间. 对于一般情形, 若 Aξ = Ax = b, 则 A(ξ − x0) = 0,
从而它所有的解就是 ξ + x, x ∈ V .

设 A 是方阵. 显然零解 x = 0 是 Ax = 0 的解, 其它解被称为非零解. 由于非零解
的倍数还是它的解, 因此 |A| = 0 ⇐⇒ Ax = 0 有无穷多 (非零) 解. 再根据解的特点可
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例: 克拉默法则的应用

例. 已知


λx1 + x2 + x3 = 1

x1 + λx2 + x3 = 1
x1 + x2 + λx3 = −2

有无穷多解, 求 λ.

解答.

0 =

∣∣∣∣∣∣∣
λ 1 1
1 λ 1
1 1 λ

∣∣∣∣∣∣∣ = λ3 + 2− 3λ = (λ− 1)2(λ + 2).

因此 λ = 1 或 −2. 显然 λ = 1 时无解. λ = −2 时, (t, t, t + 1) 是方程的解. 因此 λ = −2.
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例: 克拉默法则的应用

练习. 若


x1 + x2 + x3 = 0
x1 + λx2 + x3 = 0
x1 + x2 + (λ + 1)x3 = 0

有非零解, 则 λ =

0, 1

.

例. 证明: 若三条不同的直线

ax + by + c = 0
bx + cy + a = 0
cx + ay + b = 0

相交于一点, 则 a + b + c = 0.

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶D 克拉默法则
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例: 克拉默法则的应用

证明. 线性方程组


ax1 + bx2 + cx3 = 0
bx1 + cx2 + ax3 = 0
cx1 + ax2 + bx3 = 0

有非零解 (x, y, 1).

因此

∣∣∣∣∣∣∣
a b c
b c a
c a b

∣∣∣∣∣∣∣ = 0.

∣∣∣∣∣∣∣
a b c
b c a
c a b

∣∣∣∣∣∣∣ = (a + b + c)

∣∣∣∣∣∣∣
1 1 1
b c a
c a b

∣∣∣∣∣∣∣

= (a + b + c)(bc + ac + ab− a2 − b2 − c2)

= −1
2

(a + b + c)
[
(a− b)2 + (b− c)2 + (c− a)2].

由于这是三条不同直线, 因此 a, b, c 不可能全部相等, 从而 a + b + c = 0.

想一想: 为什么 a + b + c = 0 时, 三条直线一定相交于一点?
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有非零解 (x, y, 1). 因此

∣∣∣∣∣∣∣
a b c
b c a
c a b

∣∣∣∣∣∣∣ = 0.

∣∣∣∣∣∣∣
a b c
b c a
c a b

∣∣∣∣∣∣∣ = (a + b + c)

∣∣∣∣∣∣∣
1 1 1
b c a
c a b

∣∣∣∣∣∣∣

= (a + b + c)(bc + ac + ab− a2 − b2 − c2)

= −1
2

(a + b + c)
[
(a− b)2 + (b− c)2 + (c− a)2].

由于这是三条不同直线, 因此 a, b, c 不可能全部相等, 从而 a + b + c = 0.

想一想: 为什么 a + b + c = 0 时, 三条直线一定相交于一点?

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶D 克拉默法则
⊞□□□□⊞□□□□□□□□⊞□□□□□□⊞□□□□□□□⊞□ 124 / 166



例: 克拉默法则的应用

证明. 线性方程组


ax1 + bx2 + cx3 = 0
bx1 + cx2 + ax3 = 0
cx1 + ax2 + bx3 = 0

有非零解 (x, y, 1). 因此

∣∣∣∣∣∣∣
a b c
b c a
c a b

∣∣∣∣∣∣∣ = 0.

∣∣∣∣∣∣∣
a b c
b c a
c a b

∣∣∣∣∣∣∣ = (a + b + c)

∣∣∣∣∣∣∣
1 1 1
b c a
c a b

∣∣∣∣∣∣∣

= (a + b + c)(bc + ac + ab− a2 − b2 − c2)

= −1
2

(a + b + c)
[
(a− b)2 + (b− c)2 + (c− a)2].

由于这是三条不同直线, 因此 a, b, c 不可能全部相等, 从而 a + b + c = 0.

想一想: 为什么 a + b + c = 0 时, 三条直线一定相交于一点?

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶D 克拉默法则
⊞□□□□⊞□□□□□□□□⊞□□□□□□⊞□□□□□□□⊞□ 124 / 166



例: 克拉默法则的应用

证明. 线性方程组


ax1 + bx2 + cx3 = 0
bx1 + cx2 + ax3 = 0
cx1 + ax2 + bx3 = 0

有非零解 (x, y, 1). 因此

∣∣∣∣∣∣∣
a b c
b c a
c a b

∣∣∣∣∣∣∣ = 0.

∣∣∣∣∣∣∣
a b c
b c a
c a b

∣∣∣∣∣∣∣ = (a + b + c)

∣∣∣∣∣∣∣
1 1 1
b c a
c a b

∣∣∣∣∣∣∣
= (a + b + c)(bc + ac + ab− a2 − b2 − c2)

= −1
2

(a + b + c)
[
(a− b)2 + (b− c)2 + (c− a)2].

由于这是三条不同直线, 因此 a, b, c 不可能全部相等, 从而 a + b + c = 0.

想一想: 为什么 a + b + c = 0 时, 三条直线一定相交于一点?

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶D 克拉默法则
⊞□□□□⊞□□□□□□□□⊞□□□□□□⊞□□□□□□□⊞□ 124 / 166



例: 克拉默法则的应用

证明. 线性方程组


ax1 + bx2 + cx3 = 0
bx1 + cx2 + ax3 = 0
cx1 + ax2 + bx3 = 0

有非零解 (x, y, 1). 因此

∣∣∣∣∣∣∣
a b c
b c a
c a b

∣∣∣∣∣∣∣ = 0.

∣∣∣∣∣∣∣
a b c
b c a
c a b

∣∣∣∣∣∣∣ = (a + b + c)

∣∣∣∣∣∣∣
1 1 1
b c a
c a b

∣∣∣∣∣∣∣
= (a + b + c)(bc + ac + ab− a2 − b2 − c2)

= −1
2

(a + b + c)
[
(a− b)2 + (b− c)2 + (c− a)2].

由于这是三条不同直线, 因此 a, b, c 不可能全部相等, 从而 a + b + c = 0.

想一想: 为什么 a + b + c = 0 时, 三条直线一定相交于一点?

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶D 克拉默法则
⊞□□□□⊞□□□□□□□□⊞□□□□□□⊞□□□□□□□⊞□ 124 / 166



例: 克拉默法则的应用

证明. 线性方程组


ax1 + bx2 + cx3 = 0
bx1 + cx2 + ax3 = 0
cx1 + ax2 + bx3 = 0

有非零解 (x, y, 1). 因此

∣∣∣∣∣∣∣
a b c
b c a
c a b

∣∣∣∣∣∣∣ = 0.

∣∣∣∣∣∣∣
a b c
b c a
c a b

∣∣∣∣∣∣∣ = (a + b + c)

∣∣∣∣∣∣∣
1 1 1
b c a
c a b

∣∣∣∣∣∣∣
= (a + b + c)(bc + ac + ab− a2 − b2 − c2)

= −1
2

(a + b + c)
[
(a− b)2 + (b− c)2 + (c− a)2].

由于这是三条不同直线, 因此 a, b, c 不可能全部相等, 从而 a + b + c = 0.

想一想: 为什么 a + b + c = 0 时, 三条直线一定相交于一点?

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶D 克拉默法则
⊞□□□□⊞□□□□□□□□⊞□□□□□□⊞□□□□□□□⊞□ 124 / 166



例: 克拉默法则的应用

证明. 线性方程组


ax1 + bx2 + cx3 = 0
bx1 + cx2 + ax3 = 0
cx1 + ax2 + bx3 = 0

有非零解 (x, y, 1). 因此

∣∣∣∣∣∣∣
a b c
b c a
c a b

∣∣∣∣∣∣∣ = 0.

∣∣∣∣∣∣∣
a b c
b c a
c a b

∣∣∣∣∣∣∣ = (a + b + c)

∣∣∣∣∣∣∣
1 1 1
b c a
c a b

∣∣∣∣∣∣∣
= (a + b + c)(bc + ac + ab− a2 − b2 − c2)

= −1
2

(a + b + c)
[
(a− b)2 + (b− c)2 + (c− a)2].

由于这是三条不同直线, 因此 a, b, c 不可能全部相等, 从而 a + b + c = 0.

想一想: 为什么 a + b + c = 0 时, 三条直线一定相交于一点?
线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶D 克拉默法则
⊞□□□□⊞□□□□□□□□⊞□□□□□□⊞□□□□□□□⊞□ 124 / 166



克拉默法则的注记

使用克拉默法则解线性方程组需要:

(1) 方程组的数量和未知数数量相同;
(2) 系数矩阵行列式非零.

但由于使用克拉默法则计算量较大, 一般不使用该方法解方程, 通常仅用于理论研究.

练习. 何时下述线性方程组有非零解?

b = 0 或 −a1 − · · · − an.


(a1 + b)x1 + a2x2 + · · ·+ anxn = 0

a1x1 + (a2 + b)x2 + · · ·+ anxn = 0
...

a1x1 + a2x2 + · · ·+ (an + b)xn = 0

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶D 克拉默法则
⊞□□□□⊞□□□□□□□□⊞□□□□□□⊞□□□□□□□⊞□ 125 / 166
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克拉默法则的应用

例. 设 a1, . . . , an 两两不同. 解方程组


x1 + a1 x2 + · · ·+ an−1

1 xn = 1
x1 + a2 x2 + · · ·+ an−1

2 xn = 1
...

x1 + anx2 + · · ·+ an−1
n xn = 1

解答. 由于系数矩阵行列式为范德蒙行列式∏
1⩽i<j⩽n

(aj − ai) 6= 0,

因此方程有唯一解 x1 = 1, x2 = · · · = xn = 0.

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶D 克拉默法则
⊞□□□□⊞□□□□□□□□⊞□□□□□□⊞□□□□□□□⊞□ 126 / 166
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逆矩阵的应用: 图像处理 非考试内容

左图是一张夏天的风景图, 我们希望把它修改成秋
天的景色.

Photoshop 提供了将颜色重新搭配的通
道混合器. 用取色工具选取树叶、蓝天、地面的颜
色, 分别得到 RGB 值为

(59, 181, 19), (90, 185, 249), (210, 205, 186).

我们希望将树叶变成金黄色 RGB(234, 228, 70) 而保持蓝天和地面的颜色不变. 则我
们需要的矩阵 A 满足

A

 59 90 210
181 185 205
19 249 186

 =

234 90 210
228 185 205
70 249 186

 .

线性代数 ▶第一章 向量和矩阵 ▶ 4 逆矩阵 ▶E 逆矩阵的应用
⊞□□□□⊞□□□□□□□□⊞□□□□□□⊞□□□□□□□⊞□ 127 / 166
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逆矩阵的应用: 图像处理 非考试内容

解得

A =

234 90 210
228 185 205
70 249 186


 59 90 210

181 185 205
19 249 186


−1

≈

 0.43 1.23 −0.70
−0.15 1.33 −0.19
−0.17 0.36 0.79

 .

分别在通道混合器的红绿蓝通道输入上面三行即可.

=⇒
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第五节 分块矩阵
分块矩阵的定义和运算

特殊分块矩阵



分块矩阵的定义

有时为了研究矩阵和其部分元素形成的矩阵的联系, 需要使用分块法将其进行拆分:

定义. 用若干条横线和竖线将矩阵 A 分成许多小矩阵, 每个小矩阵成为 A 的子块, 以子
块为元素的矩阵称为分块矩阵.

例如
A =

(
Om×n Em

En On×m

)
就是一个分块矩阵. 事实上我们已经不加定义地用过分块矩阵了.

线性代数 ▶第一章 向量和矩阵 ▶ 5 分块矩阵 ▶A 分块矩阵的定义和运算
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分块矩阵的运算: 加法和数乘

若分块矩阵 A, B 同型, 且每个对应分块也同型, 则 A + B 就是对应分块相加形成
的分块矩阵:A11 · · · A1r

... . . . ...
As1 · · · Asr

+

B11 · · · B1r
... . . . ...

Bs1 · · · Bsr

 =

A11 + B11 · · · A1r + B1r
... . . . ...

As1 + Bs1 · · · Asr + Bsr

 .

数 λ 和分块矩阵的数乘, 就是 λ 和对应分块数乘形成的分块矩阵:

λ

A11 · · · A1r
... . . . ...

As1 · · · Asr

 =

λA11 · · · λA1r
... . . . ...

λAs1 · · · λAsr

 .
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分块矩阵的运算: 乘法

设

A =

A11 · · · A1r
... . . . ...

As1 · · · Asr

 , B =

B11 · · · B1t
... . . . ...

Br1 · · · Brt,


且 Aik 的列数和 Bkj 的行数相同, 则

AB =

C11 · · · C1t
... . . . ...

Cs1 · · · Cst

 , Cij =
r∑

k=1
AikBkj .

分块矩阵能相乘, 需要 A 的列块数和 B 的行块数要相等. 然后得到乘积的每个分块表达
式后, 相应的分块乘法也要能相乘. 这样分块矩阵的运算就如同把这些分块视作数一样运
算.
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分块矩阵的运算: 转置

设

A =

A11 · · · A1r
... . . . ...

As1 · · · Asr

 ,

则

AT =

AT
11 · · · AT

s1
... . . . ...

AT
1r · · · AT

sr

 .

注意小块的位置需要转置, 每个小块也需要转置.
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分块对角阵

若方阵

A =

A1
. . .

Am

 ,

其中 A1, . . . , Am 都是方阵,

称 A 为分块对角阵. 记作 A = diag(A1, . . . , Am).

分块对角阵具有如下性质:

(1) |A| = |A1| · · · |Am|;
(2) A 可逆当且仅当 A1, . . . , Am 均可逆, 此时 A−1 = diag(A−1

1 , . . . , A−1
m ).

(3) Ak = diag(Ak
1, . . . , Ak

m).

线性代数 ▶第一章 向量和矩阵 ▶ 5 分块矩阵 ▶B 特殊分块矩阵
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例: 分块对角阵

例. 求 A =


2 1 0 0
1 1 0 0
0 0 2 0
0 0 −1 3

 的逆矩阵.

解答. 设 A1 =
(

2 1
1 1

)
, A2 =

(
2 0
−1 3

)
,

则 A−1
1 =

(
1 −1
−1 2

)
, A−1

2 = 1
6

(
3 0
1 2

)
.

故 A−1 = diag(A−1
1 , A−1

2 ) =


1 −1
−1 2

1/2 0
1/6 1/3

.
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故 A−1 = diag(A−1
1 , A−1

2 ) =


1 −1
−1 2

1/2 0
1/6 1/3

.
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例: 分块三角阵的逆

例. 设 A, B 均可逆, 求
(

A O
C B

)
的逆矩阵.

解答. 由
∣∣∣∣∣A O
C B

∣∣∣∣∣ = |A| · |B| 6= 0 可知该方阵可逆.

设

(
A O
C B

)(
A1 A2
A3 A4

)
= E.

则 AA1 = E, AA2 = O, CA2 + BA4 = E. 于是 A1 = A−1, A2 = O, A4 = B−1. 再由
CA1 + BA3 = O 可得

A3 = −B−1CA1 = −B−1CA−1.

故

(
A O
C B

)−1

=
(

A−1 O
−B−1CA−1 B−1

)
.

由此可知, (分块) 上/下三角阵的逆还是 (分块) 上/下三角阵.
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例: 分块方阵的伴随

练习. 设 A, B 为同阶方阵, C =
(

A
B

)
, 则 C∗ =(

C

).

(
A∗

B∗

)
(A)

(
B∗

A∗

)
(B)(

|B|A∗

|A|B∗

)
(C)

(
|A|B∗

|B|A∗

)
(D)
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第六节 矩阵的初等变换
初等矩阵

矩阵等价

初等变换解矩阵方程



初等行变换解线性方程组

我们曾利用如下三种初等变换来帮助计算行列式:

初等变换.

(1) 互换两行 (列): ri ↔ rj, ci ↔ cj, 行列式变号;
(2) 一行 (列) 乘非零常数 k: kri, kci, 行列式变为 k 倍;
(3) j 行 (列) 乘 k 加到 i 行 (列): ri + krj, ci + kcj, 行列式不变.

实际上我们也可以对矩阵实施初等变换, 而且这三类变换过程都是可逆的, 且其逆变
换是同一类变换. 以行变换为例:

(1) ri ↔ rj 的逆是 ri ↔ rj ;

(2) kri 的逆是 1
k

ri;
(3) ri + krj 的逆是 ri − krj .

我们使用矩阵来表示上述变换.

线性代数 ▶第一章 向量和矩阵 ▶ 6 矩阵的初等变换 ▶A 初等矩阵
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(3) j 行 (列) 乘 k 加到 i 行 (列): ri + krj, ci + kcj, 行列式不变.

实际上我们也可以对矩阵实施初等变换, 而且这三类变换过程都是可逆的, 且其逆变
换是同一类变换. 以行变换为例:
(1) ri ↔ rj 的逆是 ri ↔ rj ;

(2) kri 的逆是 1
k

ri;
(3) ri + krj 的逆是 ri − krj .

我们使用矩阵来表示上述变换.

线性代数 ▶第一章 向量和矩阵 ▶ 6 矩阵的初等变换 ▶A 初等矩阵
⊞□□□□□□□□□□□⊞□□□□□□□□□□⊞□□□□□□ 137 / 166
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第一类初等矩阵

单位阵 E 经过一次初等变换得到的方阵称为初等矩阵.

(1) ri ↔ rj 和 ci ↔ cj 都对应初等矩阵

E(i, j) =



1
. . .

1
0 · · · 1 ← 第 i 行
...

1
. . .

1

...

1 · · · 0 ← 第 j 行
1

. . .
1


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第二类初等矩阵

(2) kri, kci 都对应初等矩阵

E(i(k)) =



1
. . .

1
k ← 第 i 行

1
. . .

1
↑

第 i 列


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第三类初等矩阵

(3) ri + krj , cj + kci 都对应初等矩阵

E(i, j(k)) =



1
. . .

1 k ← 第 i 行
. . .

1 ← 第 j 行
. . .

1
↑

第 i 列
↑

第 j 列



需要注意的是 ci + kcj 对应的初等矩阵不是 E(i, j(k)) 而是 E(j, i(k)).
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初等矩阵左乘矩阵

我们来看

E(1, 3)A =

0 0 1
0 1 0
1 0 0


1 2 3

4 5 6
7 8 9

 =

7 8 9
4 5 6
1 2 3

 .

E(i, j) 左乘在矩阵 A 上, 即对 A 实施 ri ↔ rj .

从

E(i, j)A = E(i, j)



...
αi
...

αj
...


=



...
αj
...

αi
...


可以看出确实如此.
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初等矩阵与初等变换

E(2(k))A =

1 0 0
0 k 0
0 0 1


1 2 3

4 5 6
7 8 9

 =

 1 2 3
4k 5k 6k
7 8 9

 .

E(i(k)) 左乘在矩阵 A 上, 即对 A 实施 kri.

E(3, 1(k))A =

1 0 0
0 1 0
k 0 1


1 2 3

4 5 6
7 8 9

 =

 1 2 3
4 5 6

7 + k 8 + 2k 9 + 3k

 .

E(i, j(k)) 左乘在矩阵 A 上, 即对 A 实施 ri + krj . 即, 初等矩阵左乘矩阵 A 等同于对
A 实施对应的初等行变换.

同理, 初等矩阵右乘矩阵 A 等同于对 A 实施对应的初等列变换.

线性代数 ▶第一章 向量和矩阵 ▶ 6 矩阵的初等变换 ▶A 初等矩阵
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初等矩阵与初等变换

定理. 设 A ∈Mm×n.

(1) 对 A 实施一次初等行变换, 相当于在A 的左边乘对应的 m 阶初等矩阵.
(2) 对 A 实施一次初等列变换, 相当于在A 的右边乘对应的 n 阶初等矩阵.
对应的初等矩阵就是对单位阵 E 实施相应的初等变换得到的矩阵.

即左行右列.

线性代数 ▶第一章 向量和矩阵 ▶ 6 矩阵的初等变换 ▶A 初等矩阵
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(2) 对 A 实施一次初等列变换, 相当于在A 的右边乘对应的 n 阶初等矩阵.
对应的初等矩阵就是对单位阵 E 实施相应的初等变换得到的矩阵.

即左行右列.
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例: 初等矩阵与初等变换

例. 设 A 为 3 阶可逆方阵, 将 A 的第 1 列与第 2 列交换得 B, 再把 B 的第 2 列加到第
3 列得到 C．求 Q = A−1C.

解答. B = A

0 1 0
1 0 0
0 0 1

 , C = B

1 0 0
0 1 1
0 0 1

 = AQ.

因此

Q =

0 1 0
1 0 0
0 0 1


1 0 0

0 1 1
0 0 1

 =

0 1 1
1 0 0
0 0 1

 .

线性代数 ▶第一章 向量和矩阵 ▶ 6 矩阵的初等变换 ▶A 初等矩阵
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例: 初等矩阵与初等变换

练习. 设 A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 , B =

 a11 a13 a12
a21 a23 a22

a31 + 2a11 a33 + 2a13 a32 + 2a12

,

P1 =

1 0 0
0 0 1
0 1 0

 , P2 =

0 0 1
0 1 0
1 0 0

 , P3 =

1 0 0
0 1 0
2 0 1

. 则 B =(

C

).

P3AP2(A) P2AP3(B) P3AP1(C) P1P2A(D)
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例: 初等矩阵的逆

由于初等变换都是可逆, 因此初等矩阵也都是可逆的:

(1) E(i, j)E(i, j) = E =⇒ E(i, j)−1 = E(i, j);
(2) E

(
i(k)

)
E
(
i( 1

k )
)

= E =⇒ E
(
i(k)

)−1 = E
(
i( 1

k )
)
;

(3) E
(
i, j(k)

)
E
(
i, j(−k)

)
= E =⇒ E

(
i, j(k)

)−1 = E
(
i, j(−k)

)
.

例. 将可逆方阵 A 的第 1 行的 2 倍加到第 2 行得到 B, 则对 A−1 实施初等变换(

D

)可
得到 B−1.

r2 + 2r1(A) r2 − 2r1(B) c1 + 2c2(C) c1 − 2c2(D)

练习. 设 A 是 n 阶可逆矩阵, 将 A 的第 i 行与第 j 行对换后得到的矩阵记为 B, 则
AB−1 =

E(i, j)

.

线性代数 ▶第一章 向量和矩阵 ▶ 6 矩阵的初等变换 ▶A 初等矩阵
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例: 初等矩阵

例. 设 P1 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 , P2 =


1
0 1
0 0 1
a 0 0 1

 , P3 =


1

k
1

1

, 求 P1P2P3 及逆.

解答.

P1
c1 + ac4∼ P1P2 =


0 0 1 0
0 1 0 0
1 0 0 0
a 0 0 1



kc2∼ P1P2P3 =


0 0 1 0
0 k 0 0
1 0 0 0
a 0 0 1

 ,

P −1
1 = P1

r4 − ar1∼ (P1P2)−1 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 −a 1



1
k

r2
∼(P1P2P3)−1 =


0 0 1 0
0 1/k 0 0
1 0 0 0
0 0 −a 1

 .

线性代数 ▶第一章 向量和矩阵 ▶ 6 矩阵的初等变换 ▶A 初等矩阵
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例: 初等变换

练习. 设

A =


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a41 a42 a43 a44
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a14 a13 a12 a11
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0 0 0 1

 .

若 A 可逆, 则 B−1 =(

C

).

A−1P1P2(A) P1A−1P2(B) P1P2A−1(C) P2A−1P1(D)
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矩阵化为行阶梯形

我们来看初等行变换能够将矩阵化简成何种形式.

1 3 −2 4
3 6 −2 11
2 1 1 3



r2 − 3r1∼
r3 − 2r1

1 3 −2 4
0 −3 4 −1
0 −5 5 −5

 −
1
5

r3
∼

1 3 −2 4
0 −3 4 −1
0 1 −1 1



r2 ↔ r3∼

1 3 −2 4
0 1 −1 1
0 −3 4 −1



r3 + 3r2∼

1 3 −2 4
0 1 −1 1
0 0 1 2



经过若干次初等行变换, 矩阵变为行阶梯形矩阵.

线性代数 ▶第一章 向量和矩阵 ▶ 6 矩阵的初等变换 ▶B 矩阵等价
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行阶梯形矩阵

定义. 满足下述条件的矩阵称为行阶梯形矩阵:

(1) 每个非零行的第一个非零元只出现在上一行第一个非零元的右边;
(2) 零行只可能出现在最下方.

换言之, 若 A ∈Mm×n, 存在正整数
1 ⩽ k1 < k2 < · · · < kℓ, ℓ ⩽ m

使得 a1,k1 , . . . , aℓ,kℓ
均非零; j < ki 或 i > ℓ 时 aij = 0.1 3 −2 4

0 1 −1 1
0 0 1 2




0 3 0 0 −1
0 0 1 0 2
0 0 0 0 1
0 0 0 0 0




2 3 4 −1
1 0 1 2
0 0 2 1
0 0 3 −1

×

任何矩阵都可通过初等行变换化为行阶梯形.

线性代数 ▶第一章 向量和矩阵 ▶ 6 矩阵的初等变换 ▶B 矩阵等价
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行最简形矩阵1 3 −2 4
0 1 −1 1
0 0 1 2
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r1 + 2r3
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1 0 0 −1
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例: 行最简形矩阵

例. 用初等行变换将 A =

 1 3 −9 3
0 1 −3 4
−2 −3 9 6

 化为行最简形矩阵.

解答.  1 3 −9 3
0 1 −3 4
−2 −3 9 6



r3 + 2r1∼

1 3 −9 3
0 1 −3 4
0 3 −9 12

 r3 − 3r2∼

1 3 −9 3
0 1 −3 4
0 0 0 0



r1 − 3r2∼

1 0 0 −9
0 1 −3 4
0 0 0 0

.

线性代数 ▶第一章 向量和矩阵 ▶ 6 矩阵的初等变换 ▶B 矩阵等价
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方阵的行最简形

命题. n 阶方阵 A 可逆 ⇐⇒ 它的行最简形为 En.

注意到初等行变换不改变行列式的非零性. 若 A 可逆, 则它的行最简形 B 不能有零
行, 从而 B 有 n 个非零行. 而每个非零行的首个非零元所在列数递增, 因此第 i 行的首
个非零元一定在第 i 列, 从而 B = E.

由此可知, 存在一系列初等矩阵 P1, . . . , Pk 使得 P1 · · ·PkA = E. 从而
A = P −1

k · · ·P −1
1 , 可逆方阵可以写成有限个初等矩阵的乘积.

线性代数 ▶第一章 向量和矩阵 ▶ 6 矩阵的初等变换 ▶B 矩阵等价
⊞□□□□□□□□□□□⊞□□□□□□□□□□⊞□□□□□□ 153 / 166



方阵的行最简形

命题. n 阶方阵 A 可逆 ⇐⇒ 它的行最简形为 En.

注意到初等行变换不改变行列式的非零性.

若 A 可逆, 则它的行最简形 B 不能有零
行, 从而 B 有 n 个非零行. 而每个非零行的首个非零元所在列数递增, 因此第 i 行的首
个非零元一定在第 i 列, 从而 B = E.

由此可知, 存在一系列初等矩阵 P1, . . . , Pk 使得 P1 · · ·PkA = E. 从而
A = P −1

k · · ·P −1
1 , 可逆方阵可以写成有限个初等矩阵的乘积.

线性代数 ▶第一章 向量和矩阵 ▶ 6 矩阵的初等变换 ▶B 矩阵等价
⊞□□□□□□□□□□□⊞□□□□□□□□□□⊞□□□□□□ 153 / 166



方阵的行最简形

命题. n 阶方阵 A 可逆 ⇐⇒ 它的行最简形为 En.

注意到初等行变换不改变行列式的非零性. 若 A 可逆, 则它的行最简形 B 不能有零
行, 从而 B 有 n 个非零行.

而每个非零行的首个非零元所在列数递增, 因此第 i 行的首
个非零元一定在第 i 列, 从而 B = E.

由此可知, 存在一系列初等矩阵 P1, . . . , Pk 使得 P1 · · ·PkA = E. 从而
A = P −1

k · · ·P −1
1 , 可逆方阵可以写成有限个初等矩阵的乘积.

线性代数 ▶第一章 向量和矩阵 ▶ 6 矩阵的初等变换 ▶B 矩阵等价
⊞□□□□□□□□□□□⊞□□□□□□□□□□⊞□□□□□□ 153 / 166



方阵的行最简形

命题. n 阶方阵 A 可逆 ⇐⇒ 它的行最简形为 En.

注意到初等行变换不改变行列式的非零性. 若 A 可逆, 则它的行最简形 B 不能有零
行, 从而 B 有 n 个非零行. 而每个非零行的首个非零元所在列数递增, 因此第 i 行的首
个非零元一定在第 i 列, 从而 B = E.

由此可知, 存在一系列初等矩阵 P1, . . . , Pk 使得 P1 · · ·PkA = E. 从而
A = P −1

k · · ·P −1
1 , 可逆方阵可以写成有限个初等矩阵的乘积.

线性代数 ▶第一章 向量和矩阵 ▶ 6 矩阵的初等变换 ▶B 矩阵等价
⊞□□□□□□□□□□□⊞□□□□□□□□□□⊞□□□□□□ 153 / 166



方阵的行最简形

命题. n 阶方阵 A 可逆 ⇐⇒ 它的行最简形为 En.

注意到初等行变换不改变行列式的非零性. 若 A 可逆, 则它的行最简形 B 不能有零
行, 从而 B 有 n 个非零行. 而每个非零行的首个非零元所在列数递增, 因此第 i 行的首
个非零元一定在第 i 列, 从而 B = E.

由此可知, 存在一系列初等矩阵 P1, . . . , Pk 使得 P1 · · ·PkA = E.

从而
A = P −1

k · · ·P −1
1 , 可逆方阵可以写成有限个初等矩阵的乘积.

线性代数 ▶第一章 向量和矩阵 ▶ 6 矩阵的初等变换 ▶B 矩阵等价
⊞□□□□□□□□□□□⊞□□□□□□□□□□⊞□□□□□□ 153 / 166



方阵的行最简形

命题. n 阶方阵 A 可逆 ⇐⇒ 它的行最简形为 En.

注意到初等行变换不改变行列式的非零性. 若 A 可逆, 则它的行最简形 B 不能有零
行, 从而 B 有 n 个非零行. 而每个非零行的首个非零元所在列数递增, 因此第 i 行的首
个非零元一定在第 i 列, 从而 B = E.

由此可知, 存在一系列初等矩阵 P1, . . . , Pk 使得 P1 · · ·PkA = E. 从而
A = P −1

k · · ·P −1
1 , 可逆方阵可以写成有限个初等矩阵的乘积.

线性代数 ▶第一章 向量和矩阵 ▶ 6 矩阵的初等变换 ▶B 矩阵等价
⊞□□□□□□□□□□□⊞□□□□□□□□□□⊞□□□□□□ 153 / 166



行最简形的应用

命题. 设 A 是 n 阶方阵. 若 |A| = 0, 则 Ax = 0 有非零解.

证明. 设 AT 的行最简形为 B = P AT,

其中 P 是一些初等矩阵的乘积, 从而可逆. 由
于 |AT| = |A| = 0, 因此 B 6= E 有零行. 设 v = (0, . . . , 0, 1)T, 那么 BTv = 0. 从而
AP Tv = 0. 由于 P T 可逆, 它的最后一列 P Tv 非零. .

推论. 设 A 为 m× n 矩阵. 若 m < n, 则 Ax = 0 有非零解.

证明. 将 A 补充 n − m 个零行得到 B =
(

A
O

)
,

则 |B| = 0, 存在非零向量 x 使得

Bx = 0. 从而 Ax = 0.

线性代数 ▶第一章 向量和矩阵 ▶ 6 矩阵的初等变换 ▶B 矩阵等价
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矩阵等价的定义

定义.

(1) 若 A 经过有限次初等行变换变为 B, 则称 A 和 B 行等价, 记作A
r∼ B.

(2) 若 A 经过有限次初等列变换变为 B, 则称 A 和 B 列等价, 记作A
c∼ B.

(3) 若 A 经过有限次初等行变换和初等列变换变为 B, 则称 A 和 B 等价, 记作A ∼ B.

由于可逆方阵可以写成有限个初等矩阵的乘积, 因此:

定理.

(1) A
r∼ B 当且仅当存在可逆矩阵 P 使得 B = P A.

(2) A
c∼ B 当且仅当存在可逆矩阵 Q 使得 B = AQ.

(3) A ∼ B 当且仅当存在可逆矩阵 P , Q 使得 B = P AQ.

线性代数 ▶第一章 向量和矩阵 ▶ 6 矩阵的初等变换 ▶B 矩阵等价
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矩阵等价的性质

由此可知

命题. 矩阵的行等价、列等价、等价均满足

(1) 自反性: A ∼ A;
(2) 对称性: A ∼ B =⇒ B ∼ A;
(3) 传递性: A ∼ B, B ∼ C =⇒ A ∼ C.

线性代数 ▶第一章 向量和矩阵 ▶ 6 矩阵的初等变换 ▶B 矩阵等价
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矩阵的标准型

任一矩阵通过有限次初等行变换变为行最简形后, 可通过初等列变换将其变为标准
型

(
Er O
O O

)
.

例如:

1 0 0 −9
0 1 −3 4
0 0 0 0



c4 + 9c1∼

1 0 0 0
0 1 −3 4
0 0 0 0

 c3 + 3c2∼
c4 − 4c2

1 0 0 0
0 1 0 0
0 0 0 0

 .

矩阵的等价也叫做相抵, 上述标准型也叫作相抵标准型. 我们会看到不同的 r 对应的
相抵标准型不等价. 所以相抵标准型相当于在每一个等价类中找到了一个具有代表性的
矩阵.

命题. n 阶方阵 A 可逆当且仅当它的标准型为 En.

线性代数 ▶第一章 向量和矩阵 ▶ 6 矩阵的初等变换 ▶B 矩阵等价
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矩阵的变换关系

任意矩阵 行阶梯形矩阵 行最简形矩阵

标准型矩阵

有限次

初等行变换

有限次

初等行变换 有
限
次
初
等
列
变
换

有限次初等变换

可逆方阵 可逆上三角阵 En

En

线性代数 ▶第一章 向量和矩阵 ▶ 6 矩阵的初等变换 ▶B 矩阵等价
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初等变换解矩阵方程

若 A 可逆, 则 AX = B ⇐⇒ X = A−1B.

若 (A, B) r∼ (E, X), 则存在可逆矩阵
P 使得 P (A, B) = (E, X). 即 P = A−1, X = A−1B. 所以

AX = B ⇐⇒ X = A−1B ⇐⇒ (A, B) r∼ (E, X).

同理
XA = C ⇐⇒ X = CA−1 ⇐⇒

(
A
B

)
c∼
(

E
X

)
.

所以我们可使用初等变换解该类型矩阵方程.
特别地, (A, E) r∼ (E, A−1) 可用来帮助计算矩阵的逆.

例. 求 A =

1 1 2
1 2 3
2 1 4

 的逆.

线性代数 ▶第一章 向量和矩阵 ▶ 6 矩阵的初等变换 ▶C 初等变换解矩阵方程
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例: 初等变换解矩阵方程

解答.

(A, E) =

1 1 2 1 0 0
1 2 3 0 1 0
2 1 4 0 0 1



r2 − r1∼
r3 − 2r1

1 1 2 1 0 0
0 1 1 −1 1 0
0 −1 0 −2 0 1


r3 + r2∼

1 1 2 1 0 0
0 1 1 −1 1 0
0 0 1 −3 1 1

 r1 − 2r3∼
r2 − r3

1 1 0 7 −2 −2
0 1 0 2 0 −1
0 0 1 −3 1 1


r1 − r2∼

1 0 0 5 −2 −1
0 1 0 2 0 −1
0 0 1 −3 1 1

.

故 A−1 =

 5 −2 −1
2 0 −1
−3 1 1

.

线性代数 ▶第一章 向量和矩阵 ▶ 6 矩阵的初等变换 ▶C 初等变换解矩阵方程
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例: 初等变换解矩阵方程

例. 若 A =

2 2 0
2 1 3
0 1 0

 , AX = A + X, 求 X.

解答. 由题设知 (A−E)X = A, X = (A−E)−1A.

(A−E, A) =

1 2 0 2 2 0
2 0 3 2 1 3
0 1 −1 0 1 0



r2 − 2r1∼
r2 ↔ r3

1 2 0 2 2 0
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0 −4 3 −2 −3 3
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例: 初等变换解矩阵方程

续解.

(A−E, A) r∼

1 2 0 2 2 0
0 1 −1 0 1 0
0 −4 3 −2 −3 3

 r3 + 4r2∼
−r3

1 2 0 2 2 0
0 1 −1 0 1 0
0 0 1 2 −1 −3



r2 + r3∼

1 2 0 2 2 0
0 1 0 2 0 −3
0 0 1 2 −1 −3



r1 − 2r2∼

1 0 0 −2 2 6
0 1 0 2 0 −3
0 0 1 2 −1 −3

.

故 X =

−2 2 6
2 0 −3
2 −1 −3

.
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例: 解矩阵方程

例. 解矩阵方程 A∗X = 2E + 2X, 其中 A =

 1 1 −1
−1 1 1
1 −1 1

.

解答. 注意到 |A| = 4.

两边同时左乘 A 得到 4X = 2A + 2AX, (2E −A)X = A.

(2E −A, A) =

 1 −1 1 1 1 −1
1 1 −1 −1 1 1
−1 1 1 1 −1 1



r∼

1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 1 0 0
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0 0 1
1 0 0
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例: 解矩阵方程

练习. 解矩阵方程 A∗XA = 2XA− 8E, 其中 A =

1 2 −2
0 −2 4
0 0 1

.

答案. 两边同时左乘 A 右乘 A−1 得到 −2X = 2AX − 8E, (A + E)X = 4E,

(A + E, 4E) =

2 2 −2 4 0 0
0 −1 4 0 4 0
0 0 2 0 0 4

 r∼

1 0 0 2 4 −6
0 1 0 0 −4 8
0 0 1 0 0 2

.
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例: 初等变换

练习.

(1) 设 A 是 3 阶方阵, 存在可逆阵 P 使得 P −1AP =

1
2

3

, 则

P −1A∗P =

diag(6, 3, 2)

.

(2) 设 A 是 3 阶方阵, 存在可逆阵 P = (α1, α2, α3) 使得 P −1AP =

1
2

3

. 若

Q = (α1, α3, α2), 则 Q−1AQ =

diag(1, 3, 2)

.
(3) 设 n 阶方阵 A, B 满足 AB = E, 则以下说法正确的有

4

个.

A 等价于 E;(i) A 等价于 B;(ii)
A 可经过有限次初等行变换化为 B;(iii) AB = BA.(iv)
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