
线性代数

张神星 (合肥工业大学)
办公室: 翡翠科教楼 B1810 东
Email: zhangshenxing@hfut.edu.cn
课件地址: https://faculty.hfut.edu.cn/zhangshenxing

mailto:zhangshenxing@hfut.edu.cn
https://faculty.hfut.edu.cn/zhangshenxing


第三章 相似和合同
1 方阵的相似

2 实对称阵的正交合同

3 实对称阵的合同



第一节 方阵的相似
特征值与特征向量

特征值和特征向量的性质

方阵的相似

相似矩阵的性质

相似对角化



特征值与特征向量的定义

设 f : Cn → Cn 是一个线性映射.

由于 Cn 中的向量由一组基

α1, . . . , αn

唯一线性表示, 因此它完全由它在该组基下的像决定. 若 f 将每个 αi 映射为它的倍数,
则 f 将会变得很容易研究.

定义. 若常数 λ 和非零向量 x 满足 Ax = λx, 称 λ 为 A 的特征值, x 为 A 关于 λ 的特
征向量.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶A 特征值与特征向量
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特征多项式

设 Ax = λx, 则
(A − λE)x = 0.

该方程有非零解当且仅当

|A − λE| =

∣∣∣∣∣∣∣∣∣∣
a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n
...

... . . . ...
an1 an2 · · · ann − λ

∣∣∣∣∣∣∣∣∣∣
= 0.

注意到该行列式是 λ 的 n 次多项式, 最高项为 (−1)nλn. 称之为 A 的特征多项式.
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特征值和特征向量的性质

在复数域中 n 次多项式总有 n 个根 (计算重数),

也就是说 A 的特征多项式可以写成

f(λ) = (λ1 − λ) · · · (λn − λ).

所以 A 的特征值有 n 个 (计算重数).

特征值和特征向量只对方阵存在, 且有如下性质:

(1) 零向量不是特征向量;
(2) 若 x 是对应 λ 的特征向量, 则它的非零倍也是;
(3) 若 x1, x2 ̸= −x1 是对应 λ 的特征向量, 则 x1 + x2 也是;
(4) |A| = 0 ⇐⇒ 0 是特征值; |A| ̸= 0 ⇐⇒ 0 不是特征值;
(5) 若 n 阶方阵 A 的各行元素之和为 k, 则 k 是 A 的一个特征值, 且特征向量为

(1, . . . , 1)T.
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特征值和特征向量的计算步骤

特征值和特征向量的计算步骤如下:

(1) 求 A 的特征多项式 f(λ) = |A − λE|;
(2) 解 f(λ) = |A − λE| = 0 得到特征值;
(3) 对于每一个特征值 λi, 解 (A − λiE)x = 0, 其非零解就是对应特征向量.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶A 特征值与特征向量
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特征值和特征向量的计算步骤
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典型例题: 求特征值和特征向量

例. 求 A =
(

1 3
4 2

)
的特征值和特征向量.

解答.

(1) 特征多项式 |A − λE| =
∣∣∣∣1 − λ 3

4 2 − λ

∣∣∣∣ = λ2 − 3λ − 10.

(2) 由 λ2 − 3λ − 10 = 0 解得特征值 λ1 = 5, λ2 = −2.

(3) 对于 λ1 = 5, A − 5E =
(

−4 3
4 −3

)
r∼
(

1 −3/4
0 0

)
, 得到基础解系

(
3/4
1

)
.

故对应的所有特

征向量为 k(3, 4)T, k ̸= 0.

(4) 对于 λ2 = −2, A + 2E =
(

3 3
4 4

)
r∼
(

1 1
0 0

)
, 得到基础解系

(
1

−1

)
.

故对应的所有特征向量

为 k(1, −1)T, k ̸= 0.
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例: 求特征值和特征向量

例. 求上三角阵 A =

a1 b c
0 a2 d
0 0 a3

 的特征值.

解答. 特征多项式

|A − λE| =

∣∣∣∣∣∣∣
a1 − λ b c

0 a2 − λ d
0 0 a3 − λ

∣∣∣∣∣∣∣ = (a1 − λ)(a2 − λ)(a3 − λ).

因此特征值为 a1, a2, a3.

上三角阵、下三角阵、对角阵的特征值就是对角元.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶A 特征值与特征向量
⊞□□□□□□□□⊞□□□□□□□□□□□□⊞□□⊞□□⊞□□□□□□□□□□□□ 6 / 78



例: 求特征值和特征向量

例. 求上三角阵 A =

a1 b c
0 a2 d
0 0 a3

 的特征值.

解答. 特征多项式

|A − λE| =

∣∣∣∣∣∣∣
a1 − λ b c

0 a2 − λ d
0 0 a3 − λ

∣∣∣∣∣∣∣ = (a1 − λ)(a2 − λ)(a3 − λ).

因此特征值为 a1, a2, a3.

上三角阵、下三角阵、对角阵的特征值就是对角元.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶A 特征值与特征向量
⊞□□□□□□□□⊞□□□□□□□□□□□□⊞□□⊞□□⊞□□□□□□□□□□□□ 6 / 78



例: 求特征值和特征向量

例. 求上三角阵 A =

a1 b c
0 a2 d
0 0 a3

 的特征值.

解答. 特征多项式

|A − λE| =

∣∣∣∣∣∣∣
a1 − λ b c

0 a2 − λ d
0 0 a3 − λ

∣∣∣∣∣∣∣ = (a1 − λ)(a2 − λ)(a3 − λ).

因此特征值为 a1, a2, a3.

上三角阵、下三角阵、对角阵的特征值就是对角元.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶A 特征值与特征向量
⊞□□□□□□□□⊞□□□□□□□□□□□□⊞□□⊞□□⊞□□□□□□□□□□□□ 6 / 78



例: 求特征值和特征向量

例. 求上三角阵 A =

a1 b c
0 a2 d
0 0 a3

 的特征值.

解答. 特征多项式

|A − λE| =

∣∣∣∣∣∣∣
a1 − λ b c

0 a2 − λ d
0 0 a3 − λ

∣∣∣∣∣∣∣ = (a1 − λ)(a2 − λ)(a3 − λ).

因此特征值为 a1, a2, a3.

上三角阵、下三角阵、对角阵的特征值就是对角元.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶A 特征值与特征向量
⊞□□□□□□□□⊞□□□□□□□□□□□□⊞□□⊞□□⊞□□□□□□□□□□□□ 6 / 78



典型例题: 求特征值和特征向量

例. 求 A =

−1 1 0
−4 3 0
1 0 2

 的特征值和特征向量.

解答. 由特征多项式

|A − λE| =

∣∣∣∣∣∣∣
−1 − λ 1 0

−4 3 − λ 0
1 0 2 − λ

∣∣∣∣∣∣∣ = (2 − λ)
∣∣∣∣∣−1 − λ 1

−4 3 − λ

∣∣∣∣∣ = (2 − λ)(λ − 1)2 = 0

得到特征值 λ = 1, 1, 2.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶A 特征值与特征向量
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典型例题: 求特征值和特征向量

续解. 对于 λ1 = 1,

A − E =

−2 1 0
−4 2 0
1 0 1

 r∼

1 0 1
0 1 2
0 0 0

 ,

得到基础解系 (−1, −2, 1)T. 故对应的所有特征向量为 k(−1, −2, 1)T, k ̸= 0.

对于 λ2 = 2,

A − 2E =

−3 1 0
−4 1 0
1 0 0

 r∼

1 0 0
0 1 0
0 0 0

 ,

得到基础解系 (0, 0, 1)T. 故对应的所有特征向量为 k(0, 0, 1)T, k ̸= 0.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶A 特征值与特征向量
⊞□□□□□□□□⊞□□□□□□□□□□□□⊞□□⊞□□⊞□□□□□□□□□□□□ 8 / 78
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典型例题: 求特征值和特征向量

练习. 求 A =

−2 1 1
0 2 0

−4 1 3

 的特征值和特征向量.

答案.

(1) 特征值 λ = −1, 2, 2.
(2) −1 对应的所有特征向量为 k(1, 0, 1)T, k ̸= 0.
(3) 2 对应的所有特征向量为 k1(0, 1, −1)T + k2(1, 0, 4)T, k1, k2 不全为零.

若 λ 是 k 重特征值, 则它对应的线性无关的特征向量最多 k 个.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶A 特征值与特征向量
⊞□□□□□□□□⊞□□□□□□□□□□□□⊞□□⊞□□⊞□□□□□□□□□□□□ 9 / 78



典型例题: 求特征值和特征向量

练习. 求 A =

−2 1 1
0 2 0

−4 1 3

 的特征值和特征向量.

答案.

(1) 特征值 λ = −1, 2, 2.
(2) −1 对应的所有特征向量为 k(1, 0, 1)T, k ̸= 0.
(3) 2 对应的所有特征向量为 k1(0, 1, −1)T + k2(1, 0, 4)T, k1, k2 不全为零.

若 λ 是 k 重特征值, 则它对应的线性无关的特征向量最多 k 个.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶A 特征值与特征向量
⊞□□□□□□□□⊞□□□□□□□□□□□□⊞□□⊞□□⊞□□□□□□□□□□□□ 9 / 78



典型例题: 求特征值和特征向量

练习. 求 A =

−2 1 1
0 2 0

−4 1 3

 的特征值和特征向量.

答案.
(1) 特征值 λ = −1, 2, 2.

(2) −1 对应的所有特征向量为 k(1, 0, 1)T, k ̸= 0.
(3) 2 对应的所有特征向量为 k1(0, 1, −1)T + k2(1, 0, 4)T, k1, k2 不全为零.

若 λ 是 k 重特征值, 则它对应的线性无关的特征向量最多 k 个.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶A 特征值与特征向量
⊞□□□□□□□□⊞□□□□□□□□□□□□⊞□□⊞□□⊞□□□□□□□□□□□□ 9 / 78



典型例题: 求特征值和特征向量

练习. 求 A =

−2 1 1
0 2 0

−4 1 3

 的特征值和特征向量.

答案.
(1) 特征值 λ = −1, 2, 2.
(2) −1 对应的所有特征向量为 k(1, 0, 1)T, k ̸= 0.

(3) 2 对应的所有特征向量为 k1(0, 1, −1)T + k2(1, 0, 4)T, k1, k2 不全为零.

若 λ 是 k 重特征值, 则它对应的线性无关的特征向量最多 k 个.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶A 特征值与特征向量
⊞□□□□□□□□⊞□□□□□□□□□□□□⊞□□⊞□□⊞□□□□□□□□□□□□ 9 / 78



典型例题: 求特征值和特征向量

练习. 求 A =

−2 1 1
0 2 0

−4 1 3

 的特征值和特征向量.

答案.
(1) 特征值 λ = −1, 2, 2.
(2) −1 对应的所有特征向量为 k(1, 0, 1)T, k ̸= 0.
(3) 2 对应的所有特征向量为 k1(0, 1, −1)T + k2(1, 0, 4)T, k1, k2 不全为零.

若 λ 是 k 重特征值, 则它对应的线性无关的特征向量最多 k 个.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶A 特征值与特征向量
⊞□□□□□□□□⊞□□□□□□□□□□□□⊞□□⊞□□⊞□□□□□□□□□□□□ 9 / 78



典型例题: 求特征值和特征向量

练习. 求 A =

−2 1 1
0 2 0

−4 1 3

 的特征值和特征向量.

答案.
(1) 特征值 λ = −1, 2, 2.
(2) −1 对应的所有特征向量为 k(1, 0, 1)T, k ̸= 0.
(3) 2 对应的所有特征向量为 k1(0, 1, −1)T + k2(1, 0, 4)T, k1, k2 不全为零.

若 λ 是 k 重特征值, 则它对应的线性无关的特征向量最多 k 个.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶A 特征值与特征向量
⊞□□□□□□□□⊞□□□□□□□□□□□□⊞□□⊞□□⊞□□□□□□□□□□□□ 9 / 78



特征值和特征向量的性质

通过

|A − λE| =

∣∣∣∣∣∣∣∣∣∣
a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n
...

... . . . ...
an1 an2 · · · ann − λ

∣∣∣∣∣∣∣∣∣∣
的展开可以看出,

若 i ̸= j, 则 i 行 j 列的代数余子式中最多只会出现 λn−2 项. 所以
|A − λE| = (a11 − λ)(a22 − λ) · · · (ann − λ) +至多 n − 2 次项

= (−1)n(λn − (a11 + a22 + · · · + ann)λn−1)+至多 n − 2 次项.

根据韦达定理, 特征值之和为 a11 + a22 + · · · + ann.
λ = 0 时, 特征多项式

f(λ) = (λ1 − λ) · · · (λn − λ)

的取值 |A| 就是特征值的乘积.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶B 特征值和特征向量的性质
⊞□□□□□□□□⊞□□□□□□□□□□□□⊞□□⊞□□⊞□□□□□□□□□□□□ 10 / 78
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特征值和特征向量的性质

定理 (特征值和特征向量的性质). 定义 A 的迹为对角元之和:

Tr(A) = a11 + a22 + · · · + ann.

(1) 特征值之和等于迹: λ1 + λ2 + · · · + λn = Tr(A);
(2) 特征值之积等于行列式: λ1λ2 · · · λn = |A|.

例.

1 1 0
1 0 1
0 1 1

 的特征值为(

C

).

1, 0, 1(A) 1, 1, 2(B) −1, 1, 2(C) −1, 1, 1(D)

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶B 特征值和特征向量的性质
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特征值和特征向量的性质

定理. 若 λ 是 A 的特征值, x 是对应特征向量, 则下述矩阵有如下对应的特征值与特征向
量:

方阵 kA Am A−1 A∗ g(A)h(A)−1 AT P −1AP

特征值 kλ λm λ−1 |A|/λ g(λ)/h(λ) λ λ

对应特征向量 x x x x x 未必是 x P −1x

这里 g, h 是多项式, 且满足 h(A) 可逆.

由此可知, 若 g(A) = O, 则 A 的所有特征值 λ 均满足 g(λ) = 0.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶B 特征值和特征向量的性质
⊞□□□□□□□□⊞□□□□□□□□□□□□⊞□□⊞□□⊞□□□□□□□□□□□□ 12 / 78
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例: 特征值和特征向量的性质

例. 设 3 阶方阵 A 的特征值为 2, 2, 3, 则

(1) A2 的特征值为

4, 4, 9

;
(2) A2 − 2A + E 的特征值为

1, 1, 4

;
(3) |A2 − 2A + E| =

4

;
(4) A−1 的特征值为

1/2, 1/2, 1/3

;
(5) A∗ 的特征值为

4, 6, 6

;
(6) A11 + A22 + A33 =

16

, 其中 Aij 表示 A 的代数余子式.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶B 特征值和特征向量的性质
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例: 特征值和特征向量的性质

例. 设 3 阶方阵 A 的特征值为 1, −1, 2. 求 |A∗ + 3A − 2E|.

解答. 由于 |A| = −2, A∗ = −2A−1.

于是

A∗ + 3A − 2E = −2A−1 + 3A − 2E

的特征值为 −1, −3, 3, |A∗ + 3A − 2E| = (−1) × (−3) × 3 = 9.

练习. 若 4 阶方阵 A 的特征值为 1, 2, −2, 0, 则下列矩阵可逆的是(

C

).

A(A) A − 2E(B) A + E(C) A − E(D)

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶B 特征值和特征向量的性质
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例: 特征值和特征向量的性质

例. 若 α = (1, k, 1)T 为 A =

2 1 1
1 2 1
1 1 2

 的逆 A−1 的特征向量, 求 k.

解答. α 也是 A 的特征向量.

Aα =

 k + 3
2k + 2
k + 3

 = λ

1
k
1

 ,

因此 λ = k + 3, 2k + 2 = (k + 3)k, k2 + k − 2 = 0, k = −2 或 1.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶B 特征值和特征向量的性质
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例: 特征值的应用 非考试内容

例. 计算 A =


a b · · · b
b a · · · b
...

... . . . ...
b b · · · a

 的行列式.

解答. 设 B = A + (b − a)E,

则 B 所有元素为 b, 秩为 1, Bx = 0 基础解系有 n − 1 个
向量. 从而 0 是 B 的至少 n − 1 重特征值. 由于 Tr(B) = nb, 因此 B 的所有特征值为
nb, 0, . . . , 0, A 的所有特征值为 nb + a − b, a − b, . . . , a − b,

|A| = (a − b)n−1(nb − b + a).

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶B 特征值和特征向量的性质
⊞□□□□□□□□⊞□□□□□□□□□□□□⊞□□⊞□□⊞□□□□□□□□□□□□ 16 / 78
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特征值和特征向量的性质

定理. 若 λ1, . . . , λm 是 A 的 m 个两两不同的特征值, 则其对应的特征向量 α1, . . . , αm

线性无关.

即对应于不同特征值的特征向量线性无关.

证明. 设 k1α1 + · · · + kmαm = 0.

左乘 Ak 得到 k1λk
1α1 + · · · + kmλk

mαm = 0. 令
k = 1, 2, . . . , m − 1, 我们得到

(k1α1, · · · , kmαm)


1 λ1 · · · λm−1

1
1 λ2 · · · λm−1

2
...

... . . . ...
1 λm · · · λm−1

m

 = O.

注意到第二个方阵的行列式是范德蒙行列式, 当 λ1, . . . , λm 两两不同时它非零, 从而
(k1α1, · · · , kmαm) = O, k1 = · · · = km = 0.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶B 特征值和特征向量的性质
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特征值和特征向量的性质

设 λ1 对应线性无关的特征向量 α1, α2, λ2 对应线性无关的特征向量 β1, β2.

若
λ1 ̸= λ2, 则 α1, α2, β1, β2 也是线性无关的. 这是因为

A(k1α1 + k2α2) = λ1(k1α1 + k2α2),

A(ℓ1β1 + ℓ2β2) = λ2(ℓ1β1 + ℓ2β2).

若 k1α1 + k2α2 + ℓ1β1 + ℓ2β2 = 0, 同理可证明这些向量都是零向量.

由此也可以知道, 不同特征值的特征向量的线性组合不可能还是特征向量.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶B 特征值和特征向量的性质
⊞□□□□□□□□⊞□□□□□□□□□□□□⊞□□⊞□□⊞□□□□□□□□□□□□ 18 / 78



特征值和特征向量的性质

设 λ1 对应线性无关的特征向量 α1, α2, λ2 对应线性无关的特征向量 β1, β2. 若
λ1 ̸= λ2, 则 α1, α2, β1, β2 也是线性无关的.

这是因为

A(k1α1 + k2α2) = λ1(k1α1 + k2α2),

A(ℓ1β1 + ℓ2β2) = λ2(ℓ1β1 + ℓ2β2).

若 k1α1 + k2α2 + ℓ1β1 + ℓ2β2 = 0, 同理可证明这些向量都是零向量.

由此也可以知道, 不同特征值的特征向量的线性组合不可能还是特征向量.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶B 特征值和特征向量的性质
⊞□□□□□□□□⊞□□□□□□□□□□□□⊞□□⊞□□⊞□□□□□□□□□□□□ 18 / 78



特征值和特征向量的性质

设 λ1 对应线性无关的特征向量 α1, α2, λ2 对应线性无关的特征向量 β1, β2. 若
λ1 ̸= λ2, 则 α1, α2, β1, β2 也是线性无关的. 这是因为

A(k1α1 + k2α2) = λ1(k1α1 + k2α2),

A(ℓ1β1 + ℓ2β2) = λ2(ℓ1β1 + ℓ2β2).

若 k1α1 + k2α2 + ℓ1β1 + ℓ2β2 = 0, 同理可证明这些向量都是零向量.

由此也可以知道, 不同特征值的特征向量的线性组合不可能还是特征向量.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶B 特征值和特征向量的性质
⊞□□□□□□□□⊞□□□□□□□□□□□□⊞□□⊞□□⊞□□□□□□□□□□□□ 18 / 78



特征值和特征向量的性质

设 λ1 对应线性无关的特征向量 α1, α2, λ2 对应线性无关的特征向量 β1, β2. 若
λ1 ̸= λ2, 则 α1, α2, β1, β2 也是线性无关的. 这是因为

A(k1α1 + k2α2) = λ1(k1α1 + k2α2),

A(ℓ1β1 + ℓ2β2) = λ2(ℓ1β1 + ℓ2β2).

若 k1α1 + k2α2 + ℓ1β1 + ℓ2β2 = 0, 同理可证明这些向量都是零向量.

由此也可以知道, 不同特征值的特征向量的线性组合不可能还是特征向量.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶B 特征值和特征向量的性质
⊞□□□□□□□□⊞□□□□□□□□□□□□⊞□□⊞□□⊞□□□□□□□□□□□□ 18 / 78



特征值和特征向量的性质

设 λ1 对应线性无关的特征向量 α1, α2, λ2 对应线性无关的特征向量 β1, β2. 若
λ1 ̸= λ2, 则 α1, α2, β1, β2 也是线性无关的. 这是因为

A(k1α1 + k2α2) = λ1(k1α1 + k2α2),

A(ℓ1β1 + ℓ2β2) = λ2(ℓ1β1 + ℓ2β2).

若 k1α1 + k2α2 + ℓ1β1 + ℓ2β2 = 0, 同理可证明这些向量都是零向量.

由此也可以知道, 不同特征值的特征向量的线性组合不可能还是特征向量.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶B 特征值和特征向量的性质
⊞□□□□□□□□⊞□□□□□□□□□□□□⊞□□⊞□□⊞□□□□□□□□□□□□ 18 / 78



应用: 天气预报

将天气简化为晴雨雪三种，其它天气由它们组合得到.

根据该地历史的天气信息，得
到当天与第二天天气的关系:

0.75

0.1

0.05

0.15
0.8

0.1

0.1 0.1

0.85

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶B 特征值和特征向量的性质
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应用: 天气预报

例. 某地某季节天气仅受前一天天气状态影响: 设 k 天后天气为晴天、雨天、雪天概率分
别为 ak, bk, ck, 则 ak

bk

ck

 = A

ak−1
bk−1
ck−1

 , A =

0.75 0.1 0.05
0.15 0.8 0.1
0.1 0.1 0.85

 .
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应用: 天气预报

解答. 设 xk = (ak, bk, ck)T, 则 xk = Axk−1.

因此 xk = Axk−1 = A2xk−2 = · · · = Akx0.
解特征多项式

|A − λE| =

∣∣∣∣∣∣∣
0.75 − λ 0.1 0.05

0.15 0.8 − λ 0.1
0.1 0.1 0.85 − λ

∣∣∣∣∣∣∣ = 0

得到特征值 λ1 = 1, λ2 = 0.75, λ3 = 0.65. 解方程 (A − λiE)x = 0 得到特征向量
v1 = (8, 13, 14)T, v2 = (1, 1, −2)T, v3 = (1, −1, 0)T.

由于今天天气是晴天, 所以 x0 = (1, 0, 0)T. 注意到 v1, v2, v3 线性无关, 因此 x0 可以由它

们线性表示. 通过计算得到 x0 = 1
35

v1 + 1
5

v2 + 4
7

v3, 因此

xk = Akx0 = 1
35

λk
1v1 + 1

5
λk

2v2 + 4
7

λk
3v3.
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应用: 天气预报

续解.

代入计算可得 xk, 从而得到未来七天晴雨雪的概率:

明天 后天 3 天后 4 天后 5 天后 6 天后 7 天后

晴 0.75 0.58 0.47 0.39 0.34 0.31 0.28
雨 0.15 0.24 0.30 0.33 0.35 0.36 0.37
雪 0.10 0.18 0.23 0.27 0.31 0.33 0.35

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶B 特征值和特征向量的性质
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基的变换

设 f : Cn → Cn 是一个线性映射.

对于任意 x ∈ Cn, 它可以唯一表达为
x = x1e1 + · · · + xnen.

通过将 f(e1), . . . , f(en) 表达为这组标准基的线性组合, 我们建立了线性映射 f 与一个 n
阶方阵 A 的联系.
一般的线性空间并没有这样的标准正交基, 或者 Cn 本身我们也可以选择其它基. 则

这种对应会有什么变化呢? 设 α1, . . . , αn 是 Cn 中一组线性无关的向量,

P = (α1, . . . , αn).

则
f(αi) = Aαi = (α1, . . . , αn)P −1Aαi,

所以 f(αi) 表达为 α1, . . . , αn 线性组合的系数形成的向量是 P −1Aαi. 它们构成矩阵
(P −1Aα1, . . . , P −1Aαn) = P −1AP .

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶C 方阵的相似
⊞□□□□□□□□⊞□□□□□□□□□□□□⊞□□⊞□□⊞□□□□□□□□□□□□ 23 / 78
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方阵的相似

也就是说, 若我们将线性空间 Cn 换一组基表达, 线性映射对应的矩阵就会变成
P −1AP .

我们称 f 在不同基下矩阵为相似的.

定义. 若存在可逆矩阵 P 使得 B = P −1AP , 则称方阵 A 与 B 相似.

注意, 相似只对方阵有定义.

命题. 方阵的相似满足

(1) 自反性: A 与自身相似;
(2) 对称性: 若 A 相似于 B, 则 B 相似于 A;
(3) 传递性: 若 A 相似于 B, B 相似于 C, 则 A 相似于 C.
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相似与等价

若 A, B 相似 (B = P −1AP ), 则 A, B 等价 (B = P AQ). 反之未必成立, 例如
A =

(
1 0
0 1

)
, B =

(
1 1
0 1

)
. 这是因为和 A = E 相似的只有它自己.

例. 若 3 阶方阵 A
r1 ↔ r3∼ B

c1 ↔ c3∼ C, 则 A 与 C (

C

).

等价但不相似(A) 相似但不等价(B)
等价而且相似(C) 既不等价也不相似(D)

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶C 方阵的相似
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相似矩阵的性质

定理 (相似矩阵的性质). 若 A 与 B 相似, 则二者的特征多项式相同, 从而特征值也相同.

这是因为若 P −1AP = B, 则

P −1(A − λE)P = P −1AP − λP −1EP = B − λE.

两边取行列式并利用行列式的可乘性得到 |A − λE| = |B − λE|.

注意反过来未必成立, 例如 A =
(

1 0
0 1

)
, B =

(
1 1
0 1

)
. 的特征多项式相同, 但它们

不相似.

相似矩阵具有相同的特征值, 但对应的特征向量未必相同.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶D 相似矩阵的性质
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相似矩阵的性质

定理 (相似矩阵的性质). 若 A 与 B 相似, 则

(1) A, B 特征值相同 (包括重数);
(2) |A| = |B|, Tr(A) = Tr(B);
(3) A ∼ B, 即 R(A) = R(B);
(4) 对于多项式 g, h, 若 h(A) 可逆, 则 h(B) 也可逆, 且 g(A)/h(A) 与 g(B)/h(B) 相
似. 特别地, A − λE 与 B − λE 相似.

推论. 若 A 与对角阵 Λ = diag(λ1, . . . , λn) 相似, 则 λ1, . . . , λn 是 A 的 n 个特征值.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶D 相似矩阵的性质
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定理 (相似矩阵的性质). 若 A 与 B 相似, 则
(1) A, B 特征值相同 (包括重数);
(2) |A| = |B|, Tr(A) = Tr(B);
(3) A ∼ B, 即 R(A) = R(B);

(4) 对于多项式 g, h, 若 h(A) 可逆, 则 h(B) 也可逆, 且 g(A)/h(A) 与 g(B)/h(B) 相
似. 特别地, A − λE 与 B − λE 相似.

推论. 若 A 与对角阵 Λ = diag(λ1, . . . , λn) 相似, 则 λ1, . . . , λn 是 A 的 n 个特征值.
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例: 相似矩阵的性质

例. 若 A =

2 −1 4
0 a 7
0 0 3

 与 Λ =

1 0 0
0 2 0
0 0 b

 相似, 则 a =

1

, b =

3

．

例. 若 3 阶可逆阵 A, B 相似, A−1 的特征值为 1/2, 1/3, 1/4, 则 |E − B| =

−6

.

练习. 若 3 阶矩阵 A 与 B 相似, 且存在非零矩阵 C 使得 AC = 2C, |A + 2E| =
0, |2A − E| = 0, 则 |B−1 − E| =

3/4

.

若 AB = kB, 则 B 的每个非零列向量均为 A 的属于特征值 k 的特征向量．

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶D 相似矩阵的性质
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相似对角化的定义

定义. 若 n 阶方阵 A 相似于某个对角阵

Λ = diag(λ1, . . . , λn),

则称 A 可(相似) 对角化.

设 P = (p1, . . . , pn), 则

P −1AP = Λ ⇐⇒ AP = P Λ ⇐⇒ (Ap1, . . . , Apn) = (λ1p1, . . . , λnpn),

即 Api = λipi. 由于 P 可逆, A 拥有 n 个线性无关的特征向量 p1, . . . , pn. 反之, 若 A
拥有 n 个线性无关的特征向量, 则选择 P 以它们为列向量即可使 A 对角化.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶E 相似对角化
⊞□□□□□□□□⊞□□□□□□□□□□□□⊞□□⊞□□⊞□□□□□□□□□□□□ 29 / 78
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可对角化的刻画

定理 (相似对角化的等价刻画). n 阶矩阵 A 可对角化 ⇐⇒ A 有 n 个线性无关的特征向
量.

推论. 若 A 的特征值两两不同, 则 A 可对角化.

反之未必成立.

例. 设 3 阶方阵 B 的特征值为 1, 2, −2, A = B3 − 4B + E, 求 A 的相似对角阵.

解答. 由于 B 特征值两两不同, 因此存在 P 使得 P −1BP = Λ = diag(1, 2, −2).

于是

P −1AP = Λ3 − 4Λ + E = diag(−2, 1, 1).

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶E 相似对角化
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例. 设 3 阶方阵 B 的特征值为 1, 2, −2, A = B3 − 4B + E, 求 A 的相似对角阵.

解答. 由于 B 特征值两两不同, 因此存在 P 使得 P −1BP = Λ = diag(1, 2, −2).

于是

P −1AP = Λ3 − 4Λ + E = diag(−2, 1, 1).
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相似对角化的步骤

回忆 k 重特征值对应的线性无关的特征向量最多 k 个.

定理 (相似对角化的等价刻画). 若 λ是 A的 k 重特征值,则 A可对角化 ⇐⇒ ∀λ, R(A−
λE) = n − k, 即 λ 对应的线性无关的特征向量恰有 k 个.

相似对角化的步骤如下:

(1) 求出 A 的所有特征值 λi 和特征向量 pi;
(2) 根据上述判定方法判断 A 是否可以相似对角化;
(3) 若能, 将 n 个对应的线性无关的特征向量 p1, . . . , pn 组成方阵 P = (p1, . . . , pn),

P −1AP = diag(λ1, . . . , λn).

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶E 相似对角化
⊞□□□□□□□□⊞□□□□□□□□□□□□⊞□□⊞□□⊞□□□□□□□□□□□□ 31 / 78
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例: 对角化的计算

例. A =

1 1 1
0 0 0
0 0 0

 能否对角化? 若能, 求 P 使得 P −1AP 是对角阵.

解答.

(1) 上三角阵 A 特征值为 1, 0, 0.

(2) 对于 λ1 = 1, A − E =

0 1 1
0 −1 0
0 0 −1

 r∼

0 1 0
0 0 1
0 0 0

,

取特征向量 p1 = (1, 0, 0)T.

(3) 对于 λ2 = λ3 = 0, A 对应的基础解系可以取 p2 = (−1, 1, 0)T, p3 = (−1, 0, 1)T.

(4) 因此 A 可对角化, 取 P =

1 −1 −1
0 1 0
0 0 1

, 则 P −1AP = diag(1, 0, 0).

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶E 相似对角化
⊞□□□□□□□□⊞□□□□□□□□□□□□⊞□□⊞□□⊞□□□□□□□□□□□□ 32 / 78
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例: 可对角化的刻画

例. 判断下列矩阵 A 能否相似对角化: (1) A 是二阶实矩阵且 |A| < 0;

(2) A =

1 2 1
0 3 0
0 0 0

; (3) A =

−2 1 1
0 2 0

−4 1 3

; (4) A =

−1 1 0
−4 3 0
1 0 2

.

解答.

(1) 特征值一正一负, 能对角化; (2) 特征值为 1, 3, 0, 能对角化;

(3) (2 − λ)(λ2 − λ − 2) =⇒ λ = −1, 2, 2. A − 2E =

−4 1 1
0 0 0

−4 1 1

 秩 1, 能对角化;

(4) (2 − λ)(λ2 − 2λ + 2) =⇒ λ = 2, 1, 1. A − E =

−2 1 0
−4 2 0
1 0 1

 秩 2, 不能对角化.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶E 相似对角化
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0 0 0

; (3) A =

−2 1 1
0 2 0

−4 1 3

; (4) A =

−1 1 0
−4 3 0
1 0 2

.

解答. (1) 特征值一正一负, 能对角化;

(2) 特征值为 1, 3, 0, 能对角化;

(3) (2 − λ)(λ2 − λ − 2) =⇒ λ = −1, 2, 2. A − 2E =
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−4 1 1

 秩 1, 能对角化;

(4) (2 − λ)(λ2 − 2λ + 2) =⇒ λ = 2, 1, 1. A − E =

−2 1 0
−4 2 0
1 0 1

 秩 2, 不能对角化.
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例: 对角化的性质

练习.

(1) 若 A =

0 0 1
a 1 1
1 0 0

 可对角化, 则 a =

−1

.

(2) 设 P = (α1, α2, α3), Q = (α1, α3, α2). 若 P −1AP = diag(1, 2, 3), 则
Q−1AQ =

diag(1, 3, 2)

.
(3) 若 3 阶方阵 A 的特征值互不相同且 |A| = 0, 则 R(A) =

2

.

(4) 若 A =

2 0 0
0 2 1
0 0 1

 , B =

2 1 0
0 2 0
0 0 1

 , C =

1 0 0
0 2 0
0 0 2

, 则(

C

).

A, C 相似, B, C 相似(A) A, C 不相似, B, C 相似(B)
A, C 相似, B, C 不相似(C) A, C 不相似, B, C 不相似(D)

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶E 相似对角化
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例: 对角化的计算

例. 设 A =

 1 −1 1
x 4 y

−3 −3 5

 有 3 个线性无关特征向量, λ = 2 是 A 的二重特征值. 求可逆阵 P ,

使得 P −1AP 为对角阵.

解答. 由 Tr(A) = 10 可知特征值为 2, 2, 6.

由 R(A − 2E) = 1 可知 x = 2, y = −2.

A − 2E =

−1 −1 1
x 2 y

−3 −3 3

 r∼

1 1 −1
0 0 0
0 0 0

 =⇒ p1 =

−1
1
0

 , p2 =

1
0
1

.

A − 6E =

−5 −1 1
2 −2 −2

−3 −3 −1
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1 0 −1/3
0 1 2/3
0 0 0
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3
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例: 对角化的计算

例. 若 A 的各行元素之和为 2, A

 1 2
0 1

−1 1

 =

−1 2
0 1
1 1

, 则 A 相似于(

C

).

diag(1, 1, 2)(A) diag(2, 1, 1)(B) diag(2, 1, −1)(C) diag(2, −1, −1)(D)

练习. 设 A =

 2 a 2
5 b 3

−1 1 −1

 有特征值 ±1, 问 A 能否相似对角化?

答案. |A ± E| = 0 =⇒ a = −1, b = −3. Tr(A) = −2 =⇒ λ3 = −2, 可对角化.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶E 相似对角化
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例: 对角化的计算

例. 设 A 为三阶方阵, α1, α2, α3 是线性无关的三维列向量且

Aα1 = 2α1, Aα2 = 3α2 + 2α3, Aα3 = 2α2 + 3α3.

证明 A 可对角化.

解答. 设 P = (α1, α2, α3), 则

AP = A(α1, α2, α3) = (α1, α2, α3)B = P B, 其中 B =

2 0 0
0 3 2
0 2 3

 .

由于 B 的特征值是 2, 1, 5, 因此 B 能对角化, 从而 A = P BP −1 也可以.

一般地, 实对称矩阵一定能对角化. 我们将在下一节中解释这为何成立.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶E 相似对角化
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相似标准形 非考试内容

任何方阵都可以相似于约当标准形

diag(Jk1(λ1), . . . , Jkt(λt)),

其中 Jk(λ) =


λ 1

λ
. . .
. . . 1

λ

 是 k 阶方阵.

当 k1 = · · · = kt = 1 时这就是对角阵.

特别地, 任何方阵都可以相似于一个上三角阵.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶E 相似对角化
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伴随矩阵的特征值

容易知道上三角阵的伴随矩阵的对角元.

因此 A∗ 的所有特征值的就是 A 的 n 个特
征值中 n − 1 个相乘得到的.

(1) 当 |A| ̸= 0 时, A∗ 的所有特征值为 |A|/λ.
(2) 当 |A| = 0 且 λ1 = 0 是一重特征值, 则 A∗ 唯一的非零特征值为 A 非零特征值之乘
积.

(3) 当 |A| = 0 且 λ1 = 0 是 ⩾ 2 重特征值, 则 A∗ = O.

练习. 若 4 阶实矩阵 A∗ 的特征值为 −1, 1, 2, 4, 则下列矩阵可逆的是(

D

).

A + 2E(A) A − 2E(B) 2A + E(C) A − E(D)

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶E 相似对角化
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征值中 n − 1 个相乘得到的.

(1) 当 |A| ̸= 0 时, A∗ 的所有特征值为 |A|/λ.

(2) 当 |A| = 0 且 λ1 = 0 是一重特征值, 则 A∗ 唯一的非零特征值为 A 非零特征值之乘
积.

(3) 当 |A| = 0 且 λ1 = 0 是 ⩾ 2 重特征值, 则 A∗ = O.

练习. 若 4 阶实矩阵 A∗ 的特征值为 −1, 1, 2, 4, 则下列矩阵可逆的是(

D

).

A + 2E(A) A − 2E(B) 2A + E(C) A − E(D)

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶E 相似对角化
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例: 方阵的相似的应用

利用约当标准形还可以计算任意矩阵的幂:

Jk(λ)m = (λE + N)m =
m∑

i=0
Ci

mλm−iN i, 其中 N = Jk(0).

例. 设 A =
(

5 −6
1 0

)
, 计算 Ak.

解答. A 特征值为 2, 3, 对应的特征向量可以取 p1 =
(

2
1

)
, p2 =

(
3
1

)
.

设 P =
(

2 3
1 1

)
,

则 P −1AP = Λ =
(

2
3

)
, Ak = P ΛkA−1

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶E 相似对角化
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例: 方阵的相似的应用

续解. 因此

Ak =
(

2 3
1 1

)(
2k

3k

)(
−1 3
1 −2

)
=
(

3k+1 − 2k+1 6(2k − 3k)
3k − 2k 6(2k−1 − 3k−1)

)
.

线性递推数列是指满足如下递推关系的数列

an+k − ck−1an+k−1 − · · · − c1an+1 − c0an = 0,

它的通项可以用矩阵方法来计算. 例如

an+2 = 5an+1 − 6an, a0 = a1 = 1.

设 xn =
(

an+1
an

)
, 则 xn = Axn−1 = Anx0 =

(
2n+2 − 3n+1

2n+1 − 3n

)
, 故 an = 2n+1 − 3n.

线性代数 ▶第三章 相似和合同 ▶ 1 方阵的相似 ▶E 相似对角化
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第二节 实对称阵的正交合同
实二次型

实对称阵和实二次型的合同



引例: 二次曲线的分类

我们知道,
x2

a2 + y2

b2 = 1,
x2

a2 − y2

b2 = 1

分别表示椭圆和双曲线.

对于二次曲线

Ax2 + Bxy + Cy2 = 1,

它又表示什么图形呢?

线性代数 ▶第三章 相似和合同 ▶ 2 实对称阵的正交合同 ▶A 实二次型
⊞□□□⊞□□□□□□□□□□□□□ 42 / 78
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实二次型的定义

定义. 若 n 元多项式 f(x1, . . . , xn) 满足

f(λx1, . . . , λxn) = λ2f(x1, . . . , xn), ∀λ ∈ R,

则称 f 为二次齐次多项式或实二次型. 它可以写成

f(x) = a11x2
1 + a22x2

2 + · · · + annx2
n + 2a12x1x2 + · · · + 2an−1,nxn−1xn.

本课程仅讨论实二次型. 根据定义, f 不能包含一次项和常数项. 若 f 的交叉项
xixj(i < j) 系数均为零, 则称 f 为实二次型的标准形.

线性代数 ▶第三章 相似和合同 ▶ 2 实对称阵的正交合同 ▶A 实二次型
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实二次型的矩阵形式

设实二次型 f 的 x2
i 项的系数为 aii, xixj(i < j) 项的系数为 2aij .

设 aji = aij , 对称
阵 A = (aij)n, 则

(x1, . . . , xn)A

x1
...

xn

 = (
n∑

i=1
ai1xi, . . . ,

n∑
i=1

ainxi)

x1
...

xn


=

n∑
j=1

( n∑
i=1

aijxi

)
xj =

n∑
i,j=1

aijxixj = f(x1, . . . , xn),

即 f = xTAx, 其中 x = (x1, . . . , xn)T, A 为实对称阵.
反过来, 任给一个实对称阵 A, 多项式 f(x) = xTAx 显然满足

f(λx) = (λx)TA(λx) = λ2f(x),

故 f 是实二次型. 因此实二次型 f 与对称阵 A 之间存在一一对应的关系.

线性代数 ▶第三章 相似和合同 ▶ 2 实对称阵的正交合同 ▶A 实二次型
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例: 实二次型的矩阵形式

例. 写出实二次型 f(x1, x2, x3) = x2
1 + 4x1x2 + 4x2

2 + 2x1x3 + x2
3 + 4x2x3 对应的矩阵.

解答. A =

1 2 1
2 4 2
1 2 1

.

若 f 是标准形, 则 f 对应矩阵 A 是对角阵.

线性代数 ▶第三章 相似和合同 ▶ 2 实对称阵的正交合同 ▶A 实二次型
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合同

定义.

(1) 若存在可逆线性变换 x = P y 使得实二次型 f 在变量 x, y 下的矩阵分别为 A, B,
则称矩阵 A 合同或相合于 B.

(2) 若 P 是正交阵, 则称矩阵 A 正交合同或正交相合于 B.

若 A 是对称阵, P 可逆, 则 P TAP 也是对称阵. 由

f = xTAx = yTP TAP y = yT(P TAP )y

可知 A (正交) 合同于 B 当且仅当存在可逆 (正交) 方阵 P 使得 B = P TAP .

线性代数 ▶第三章 相似和合同 ▶ 2 实对称阵的正交合同 ▶B 实对称阵和实二次型的合同
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合同、等价、相似的关系

命题. 对称方阵的 (正交) 合同满足

(1) 自反性: A 与自身 (正交) 合同;
(2) 对称性: 若 A (正交) 合同于 B, 则 B (正交) 合同于 A;
(3) 传递性: 若 A (正交) 合同于 B, B (正交) 合同于 C, 则 A (正交) 合同于 C.

合同、等价、相似有如下关系:

(1) 若 A, B 合同, 则 A, B 等价, R(A) = R(B). 反之未必.
(2) 若 A, B 正交合同, 则 A, B 相似. 反之, 若实对称阵 A, B 相似, 则二者正交合同.

线性代数 ▶第三章 相似和合同 ▶ 2 实对称阵的正交合同 ▶B 实对称阵和实二次型的合同
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实二次型的对角化

定理. 对于实对称阵 A, 存在正交阵 P 使得 P TAP 是对角阵. 从而 A 对应的实二次型
在线性变换 y = P x 下变为标准形.

命题. 实对称阵的特征值一定是实数, 从而其特征向量均可取实向量.

证明. 设 A 是实对称阵, 非零向量 x 满足 Ax = λx.

两边取转置和共轭并右乘 x 得到

λ̄xTx = xTA
T

x = xTAx = λxTx.
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实二次型的对角化的证明

定理的证明.

归纳证明 A 存在 n 个两两正交的单位特征向量. 假设我们已找到 k < n
个两两正交的单位特征向量 e1, . . . , ek, 分别对应特征值 λ1, . . . , λk. 设 V 是与这些向量均
正交的实向量全体, 即方程 (e1, . . . , ek)Tx = 0 的解空间. 由于系数秩为 k, 存在基础解系
v1, . . . , vn−k ∈ V . 对任意 i, j,

[ei, Avj ] = eT
i Avj = (Aei)Tvj = λie

T
i vj = 0 =⇒ Avj ∈ V.

设 (n − k) 阶矩阵 B 的第 j 列是 Avi 表示为 v1, . . . , vn−k 线性组合的系数, 即
A(v1, . . . , vn−k) = (v1, . . . , vn−k)B.

设非零向量 x 满足 Bx = λx, 则
A(v1, . . . , vn−k)x = λ(v1, . . . , vn−k)x,

即非零向量 (v1, . . . , vn−k)x 是 A 关于 λ 的特征向量, 于是 λ ∈ R 且可选择 x 使得它是
实向量, 它和 e1, . . . , ek 均正交. 令 ek+1 为该向量的标准化. 归纳可知 A 存在 n 个两两
正交的特征向量, 它们构成的正交阵 P = (e1, . . . , en) 满足题述要求.
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对阵矩阵的性质

由于特征值 λ 对应的实特征向量就是 P 中 λ 对应的那些列向量的线性组合,

因此:

推论. 实对称阵的不同特征值对应的实特征向量正交.

练习.

(1) 设 α1 = (1, −3, 1)T, α2 = (1, a, 2)T 是实对称阵 A 对应特征值 λ1 = 1 和 λ2 = 2 的特
征向量, 则 a =

1

.
(2) 若 3 阶实对称阵 A 满足 A2 = A, R(A) = 1, 则 A 的特征值为

0, 0, 1

.
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例: 对阵矩阵的性质

例. 设 3 阶实对称阵 A 的特征值为 6, 3, 3, 与特征值 6 对应的特征向量为 α1 = (1, 1, 1)T, 求 A.

解答. 由于 A 有两个对应特征值 3 的线性无关特征向量, 因此与 α1 正交的向量都是与特征值 3
对应的特征向量.

由 αT
1 x = 0 得 α2 = (−1, 1, 0)T, α3 = (−1, 0, 1)T. 故

A = P diag(6, 3, 3)P −1 =

1 −1 −1
1 1 0
1 0 1

6
3

3

1 −1 −1
1 1 0
1 0 1

−1

=

4 1 1
1 4 1
1 1 4

 .

另解. 根据 A 的行和、迹和对称性可设 A =

 a b 6 − a − b
b 9 − a − b a

6 − a − b a 3 + b

.

再由 R(A −

3E) = 1 可知 a = 4, b = 1.
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实二次型对角化的步骤

对称阵正交合同对角化, 或求正交变换 x = P y 将实二次型 f 化为标准形的步骤:

(1) 写出 f 对应的对称阵 A.
(2) 求出 A 的特征值.
(3) 若特征值是 k 重的, 求出 k 个特征向量后, 用格拉姆-施密特方法将其正交单位化.
(4) 这些特征向量构成正交阵 P , P TAP = diag(λ1, λ2, . . . , λn).
(5) 写出正交变换 x = P y 以及对应的实二次型

f = λ1y2
1 + · · · + λny2

n.

线性代数 ▶第三章 相似和合同 ▶ 2 实对称阵的正交合同 ▶B 实对称阵和实二次型的合同
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典型例题: 实二次型的对角化

例. 设 A =

2 0 0
0 0 1
0 1 x

 , B =

2 0 0
0 y 0
0 0 −1

 相似, 求 x, y 以及正交阵 P 使得 P −1AP =

B.

解答. 由 A, B 相似得 |A| = −2 = |B| = −2y, Tr(A) = 2 + x = Tr(B) = 1 + y,

故
x = 0, y = 1.
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典型例题: 实二次型的对角化

续解.

• 对于 λ2 = 1, A − E =

1 0 0
0 −1 1
0 1 −1

 r∼

1 0 0
0 1 −1
0 0 0

 =⇒ α2 =

0
1
1

.

• 对于 λ3 = −1, A + E =

3 0 0
0 1 1
0 1 1

 r∼

1 0 0
0 1 1
0 0 0

 =⇒ α3 =

 0
1

−1

.

• 将特征向量单位化得到 P =


1 0 0
0 1√

2
1√
2

0 1√
2

− 1√
2

.
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典型例题: 实二次型的对角化

例. 求正交变换 x = P y 化 f = 4x2
1 + 4x2

2 + 4x2
3 + 4x1x2 + 4x2x3 + 4x3x1 为标准形.

解答.

• f 对应 A =

4 2 2
2 4 2
2 2 4

.

由 |A − λE| = −(λ − 2)2(λ − 8) 得到特征值 8, 2, 2.

• 对于 λ1 = 8, A − 8E =

−4 2 2
2 −4 2
2 2 −4

 r∼

1 0 −1
0 1 −1
0 0 0

 =⇒ α1 =

1
1
1

.

将其单位

化得到 e1 = 1√
3

1
1
1

.

线性代数 ▶第三章 相似和合同 ▶ 2 实对称阵的正交合同 ▶B 实对称阵和实二次型的合同
⊞□□□⊞□□□□□□□□□□□□□ 55 / 78



典型例题: 实二次型的对角化

例. 求正交变换 x = P y 化 f = 4x2
1 + 4x2

2 + 4x2
3 + 4x1x2 + 4x2x3 + 4x3x1 为标准形.

解答.

• f 对应 A =

4 2 2
2 4 2
2 2 4

.

由 |A − λE| = −(λ − 2)2(λ − 8) 得到特征值 8, 2, 2.

• 对于 λ1 = 8, A − 8E =

−4 2 2
2 −4 2
2 2 −4

 r∼

1 0 −1
0 1 −1
0 0 0

 =⇒ α1 =

1
1
1

.

将其单位

化得到 e1 = 1√
3

1
1
1

.

线性代数 ▶第三章 相似和合同 ▶ 2 实对称阵的正交合同 ▶B 实对称阵和实二次型的合同
⊞□□□⊞□□□□□□□□□□□□□ 55 / 78



典型例题: 实二次型的对角化

例. 求正交变换 x = P y 化 f = 4x2
1 + 4x2

2 + 4x2
3 + 4x1x2 + 4x2x3 + 4x3x1 为标准形.

解答.

• f 对应 A =

4 2 2
2 4 2
2 2 4

.

由 |A − λE| = −(λ − 2)2(λ − 8) 得到特征值 8, 2, 2.

• 对于 λ1 = 8, A − 8E =

−4 2 2
2 −4 2
2 2 −4

 r∼

1 0 −1
0 1 −1
0 0 0

 =⇒ α1 =

1
1
1

.

将其单位

化得到 e1 = 1√
3

1
1
1

.

线性代数 ▶第三章 相似和合同 ▶ 2 实对称阵的正交合同 ▶B 实对称阵和实二次型的合同
⊞□□□⊞□□□□□□□□□□□□□ 55 / 78



典型例题: 实二次型的对角化

例. 求正交变换 x = P y 化 f = 4x2
1 + 4x2

2 + 4x2
3 + 4x1x2 + 4x2x3 + 4x3x1 为标准形.

解答.

• f 对应 A =

4 2 2
2 4 2
2 2 4

. 由 |A − λE| = −(λ − 2)2(λ − 8) 得到特征值 8, 2, 2.

• 对于 λ1 = 8, A − 8E =

−4 2 2
2 −4 2
2 2 −4

 r∼

1 0 −1
0 1 −1
0 0 0

 =⇒ α1 =

1
1
1

.

将其单位

化得到 e1 = 1√
3

1
1
1

.

线性代数 ▶第三章 相似和合同 ▶ 2 实对称阵的正交合同 ▶B 实对称阵和实二次型的合同
⊞□□□⊞□□□□□□□□□□□□□ 55 / 78



典型例题: 实二次型的对角化

例. 求正交变换 x = P y 化 f = 4x2
1 + 4x2

2 + 4x2
3 + 4x1x2 + 4x2x3 + 4x3x1 为标准形.

解答.

• f 对应 A =

4 2 2
2 4 2
2 2 4

. 由 |A − λE| = −(λ − 2)2(λ − 8) 得到特征值 8, 2, 2.

• 对于 λ1 = 8, A − 8E =

−4 2 2
2 −4 2
2 2 −4

 r∼

1 0 −1
0 1 −1
0 0 0

 =⇒ α1 =

1
1
1

.

将其单位

化得到 e1 = 1√
3

1
1
1

.

线性代数 ▶第三章 相似和合同 ▶ 2 实对称阵的正交合同 ▶B 实对称阵和实二次型的合同
⊞□□□⊞□□□□□□□□□□□□□ 55 / 78



典型例题: 实二次型的对角化

例. 求正交变换 x = P y 化 f = 4x2
1 + 4x2

2 + 4x2
3 + 4x1x2 + 4x2x3 + 4x3x1 为标准形.

解答.

• f 对应 A =

4 2 2
2 4 2
2 2 4

. 由 |A − λE| = −(λ − 2)2(λ − 8) 得到特征值 8, 2, 2.

• 对于 λ1 = 8, A − 8E =

−4 2 2
2 −4 2
2 2 −4

 r∼

1 0 −1
0 1 −1
0 0 0

 =⇒ α1 =

1
1
1

. 将其单位

化得到 e1 = 1√
3

1
1
1

.

线性代数 ▶第三章 相似和合同 ▶ 2 实对称阵的正交合同 ▶B 实对称阵和实二次型的合同
⊞□□□⊞□□□□□□□□□□□□□ 55 / 78



典型例题: 实二次型的对角化

续解.

• 对于 λ2, λ3 = 2, A − 2E =

2 2 2
2 2 2
2 2 2

 r∼

1 1 1
0 0 0
0 0 0

=⇒ α2 =

−1
1
0

 , α3 =

−1
0
1

.

将其正交单位化得到 β2 =

−1
1
0

 , e2 = 1√
2

−1
1
0

,

β3 = α3 − [α3, β2]
[β2, β2]

β2 = α3 − 1
2

β2 =

−1/2
−1/2

1

 , e3 = 1√
6

−1
−1
2

 .

• 因此经过正交变换 x =


1√
3 − 1√

2 − 1√
6

1√
3

1√
2 − 1√

6
1√
3 0 2√

6

y, f 化为标准形 f = 8y2
1 + 2y2

2 + 2y2
3 .

线性代数 ▶第三章 相似和合同 ▶ 2 实对称阵的正交合同 ▶B 实对称阵和实二次型的合同
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6

−1
−1
2

 .

• 因此经过正交变换 x =


1√
3 − 1√

2 − 1√
6

1√
3

1√
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6
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3 0 2√

6

y, f 化为标准形 f = 8y2
1 + 2y2

2 + 2y2
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典型例题: 实二次型的对角化

例. 设实二次型 f = ax2
1 + x2

2 + x2
3 + 4x1x2 + 4x2x3 + 4x3x1 经过正交变换 x = P y 化为

f = 5y2
1 − y2

2 − y2
3. 求常数 a 和正交阵 P .

解答. f 对应 A =

a 2 2
2 1 2
2 2 1

, Tr(A) = a + 2 = 5 − 1 − 1, a = 1.

同上例可得 P =
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例: 正定的性质和判定

例. 设二次型 f = xTAx. 证明: 当 ∥x∥ = 1 时, f(x) 的最大 (小) 值为实对称阵 A 的最
大 (小) 特征值.

证明. 将 A 的特征值排序为 λ1 ⩾ λ2 ⩾ · · · ⩾ λn.

存在正交变换 x = P y 使得

Λ = P TAP = diag(λ1, . . . , λn), f = xTAx = yTΛy = λ1y2
1 + · · · + λny2

n.

由于正交变换保持长度, 因此 ∥x∥ = 1 ⇐⇒ ∥y∥ = 1.

f = λ1y2
1 + · · · + λny2

n ⩽ λ1(y2
1 + · · · + y2

n) = λ1,

且等式可在 y = (1, 0, . . . , 0) 处取得.

f = λ1y2
1 + · · · + λny2

n ⩾ λn(y2
1 + · · · + y2

n) = λn,

且等式可在 y = (0, . . . , 0, 1) 处取得. 故 f 的最大值为 λ1, 最小值为 λn.

线性代数 ▶第三章 相似和合同 ▶ 2 实对称阵的正交合同 ▶B 实对称阵和实二次型的合同
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第三节 实对称阵的合同
惯性指数

正定二次型



引例: 二次曲线的分类

设 A, B, C 是不全为零的实数. 二次曲线 Ax2 + Bxy + Cy2 = 1 左侧的实二次型对
应方阵 A =

(
A B/2

B/2 C

)
.

由

|A − λE| =
∣∣∣∣∣A − λ B/2

B/2 C − λ

∣∣∣∣∣ = λ2 − (A + C)λ + (AC − B2/4)

可知,

(1) 当 B2 − 4AC > 0 时, A 特征值一正一负, 从而通过正交变换
(

x
y

)
= P

(
s
t

)
可知该

曲线为双曲线.
(2) 同理, B2 − 4AC < 0 时该曲线为椭圆 (或空集);
(3) B2 − 4AC = 0 时该曲线为两条直线 (若有一次项则为抛物线).

线性代数 ▶第三章 相似和合同 ▶ 3 实对称阵的合同 ▶A 惯性指数
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惯性定理

可以看出我们有时候只关心实二次型对应的矩阵的特征值的符号.

由于合同矩阵秩
相同, 因此可定义:

定义. 称实二次型 f 对应矩阵的秩为 f 的秩.

定理 (惯性定理).

(1) 若 A 和 B 为合同的对角阵, 则 A, B 对角元中正数的个数相同.

(2) 设实二次型 f 的秩为 r. 若可逆线性变换 x = P y = Qz 分别将 f 变为

f = k1y2
1 + · · · + kry2

r , = ℓ1z2
1 + · · · + ℓrz2

r ,

则 k1, . . . , kr 中正的个数和 ℓ1, . . . , ℓr 中正的个数相同.
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惯性指数

证明. 设

A = diag(k1, . . . , kr, 0, . . . , 0),
B = diag(ℓ1, . . . , ℓr, 0, . . . , 0) = P TAP ,

其中 P = (α1, . . . , αn) 为可逆矩阵.

不难得到 P TAP 的对角元:

B = P TAP = diag(k1αT
1 α1, . . . , krαT

r αr, 0, . . . , 0).

从而 ℓi = ki∥αi∥2, 二者符号相同. (2) 由(1) 得到.

定义. 把实二次型 f 标准形系数中为正数的个数称为 f 的正惯性指数 p, 为负数的个数称
为 f 的负惯性指数 q = r − q.

线性代数 ▶第三章 相似和合同 ▶ 3 实对称阵的合同 ▶A 惯性指数
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实对称阵的相合

推论. 实二次型 f = xTAx 的正 (负) 惯性指数等于实对称阵 A 的正 (负) 特征值的个数.

定理. 任意 n 阶实对称矩阵 A 合同于对角矩阵Ep

−Eq

On−p−q

 ,

其中 p, q 分别为正负特征值个数 (计算重数), R(A) = p + q.

从而正负惯性指数相同的实对称阵是合同的.

推论. n 阶实对称阵 A 与 B 合同 ⇐⇒ A, B 的正负特征值个数均相同.

线性代数 ▶第三章 相似和合同 ▶ 3 实对称阵的合同 ▶A 惯性指数
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例: 惯性指数的应用

例. 设 A =
(

1 2
2 1

)
, 则 A 合同于(

D

).

(
−2 1
1 −2

)
(A)

(
2 −1

−1 2

)
(B)

(
2 1
1 2

)
(C)

(
1 −2

−2 1

)
(D)

例. 矩阵
(

1 1
1 1

)
与

(
3 0
0 0

)
(

B

).

合同且相似(A) 合同但不相似(B)
不合同但相似(C) 既不合同也不相似(D)

线性代数 ▶第三章 相似和合同 ▶ 3 实对称阵的合同 ▶A 惯性指数
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实二次型规范形

定义. 若实二次型的标准形的系数只在 −1, 0, 1 三个数中取值, 则称此实二次型为规范形．

定理. 任意一个实二次型总可经过适当的可逆线性变换化为规范形, 且规范形是唯一的
(可任意交换变量顺序):

f = x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

p+q,

其中 p, q 分别为正负惯性指数.

例. 若实对称矩阵 A合同于

1 0 0
0 0 2
0 2 0

,则通过可逆线性变换 x = P y 可将二次型 xTAx

化为规范形

y2
1 + y2

2 − y2
3

.

线性代数 ▶第三章 相似和合同 ▶ 3 实对称阵的合同 ▶A 惯性指数
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例: 二次曲面的分类

对于三元实二次型, 正负惯性指数确定了二次曲面的类别.

(1) p = 3, q = 0 为椭球面 x2

a2 + y2

b2 + z2

c2 = 1.

(2) p = 2, q = 1 为单叶双曲面 x2

a2 + y2

b2 − z2

c2 = 1.

(3) p = 1, q = 2 为双叶双曲面 x2

a2 − y2

b2 − z2

c2 = 1.

(4) p = 2, q = 0 为椭圆柱面 x2

a2 + y2

b2 = 1.

(5) p = 1, q = 1 为双曲柱面 x2

a2 + y2

b2 = 1.
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正定和负定

定义. 设 f = xTAx 是二次型.

(1) 若对任意 x ̸= 0, 都有 f(x) > 0, 则称 f 为正定二次型, 并称实对称阵 A 为正定矩
阵, 也记作 A > 0.

(2) 若对任意 x, 都有 f(x) ⩾ 0, 则称 f 为半正定二次型, 并称实对称阵 A 为半正定矩
阵, 也记作 A ⩾ 0.

(3) 若 −f (半) 正定, 则称 f 为(半) 负定二次型, 并称实对称阵 A 为(半) 负定矩阵, 也
记作 A < 0 (A ⩽ 0).

(4) 除此之外, 称 f 不定.

可逆线性变换 x = P y 不会影响正定性. A 正定 ⇐⇒ P TAP 正定.
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例: 正定和负定

例.

(1) f(x1, x2, x3) = x2
1 + x2

2 半正定.
(2) f(x1, x2, x3) = x2

1 − 2x2
2 + x2

3 不定.
(3) f(x1, x2, x3) = (x1 + x2)2 + (x2 + x3)2 + (x3 + x1)2 正定.
(4) f(x1, x2, x3) = (x1 − x2)2 + (x2 − x3)2 + (x3 − x1)2 半正定.
(5) 椭球面 f(x, y, z) = 1 对应的二次型正定.
(6) 单叶/双叶双曲面 f(x, y, z) = 1 对应的二次型不定.
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正定的判定

定理. 设 A 是 n 阶实对称阵, f = xTAx. 如下命题等价:

(1) A > 0 正定, 即 f 正定.
(2) f 的正惯性指数为 n, 即 A 特征值全为正.
(3) 存在正交阵 P 使得 A = P TP .
(4) (赫尔维茨定理) A 的各阶顺序主子式都为正, 即

a11 > 0,

∣∣∣∣∣a11 a12
a21 a22

∣∣∣∣∣ > 0,
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例: 正定的性质和判定

推论. 若 A 正定, 则 |A| > 0 且对角元全为正.

例. 若 f(x1, x2, x3) = 2x2
1 + x2

2 + x2
3 + 2x1x2 + tx2x3 正定, 求 t 的取值范围.

解答. f 对应 A =

2 1 0
1 1 t/2
0 t/2 1

,

顺序主子式

2 > 0,

∣∣∣∣∣2 1
1 1

∣∣∣∣∣ = 1 > 0, |A| = 1 − t2

2
> 0

得到 −
√

2 < t <
√

2.

线性代数 ▶第三章 相似和合同 ▶ 3 实对称阵的合同 ▶B 正定二次型
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例: 求二次型的规范形

例. 求可逆线性变换 x = P y 二次型 f = −5x2
1 + 6x2

2 − 2x2
3 + 6x1x2 + 4x1x3 化为规范形.

解答.

f = −2(x3 − x1)2 − 3x2
1 + 6x2

2 + 6x1x2

= −2(x3 − x1)2 − 3(x1 − x2)2 + 9x2
2

因此 x = yP , P =

−
√

2
√

3 0
0 −

√
3 3√

2 0 0


−1

=


0 0 1√

2
1√
3

0 1√
3

1
3

1
3

1
3

, 将 f 化为规范形 f =

−y2
1 − y2

2 + y2
3,

线性代数 ▶第三章 相似和合同 ▶ 3 实对称阵的合同 ▶B 正定二次型
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例: 正定的性质和判定

例. 若实对称阵 A 正定, 证明 |A + E| > 1.

证明. 由A正定可知其特征值均为正,从而A+E 特征值都大于 1.

从而 |A+E| > 1.

例. 设 3 阶实对称阵 A 满足 A2 + 2A = O, R(A) = 2. 当 k 为何值时, 矩阵 A + kE 为正
定矩阵.

解答. 由 A2 + 2A = O 可知 A 的特征值满足 λ2 + 2λ = 0, λ = 0, −2.

由 R(A) = 2 可知
A 特征值为 0, −2, −2, A + kE 特征值为 k, k − 2, k − 2. 因此 k > 2.

线性代数 ▶第三章 相似和合同 ▶ 3 实对称阵的合同 ▶B 正定二次型
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例: 正定的性质和判定

例. 设 A 是 m × n 实矩阵且 R(A) = n. 证明 ATA 正定.

证明. 显然 ATA 是对称的.

注意到

xT(ATA)x = (Ax)TAx = ∥Ax∥2.

由于 R(A) = n, Ax = 0 只有零解. 因此当 x ̸= 0 时, Ax ̸= 0, 从而

xT(ATA)x = ∥Ax∥2 > 0.

线性代数 ▶第三章 相似和合同 ▶ 3 实对称阵的合同 ▶B 正定二次型
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由于 R(A) = n, Ax = 0 只有零解. 因此当 x ̸= 0 时, Ax ̸= 0, 从而

xT(ATA)x = ∥Ax∥2 > 0.
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例: 正定的性质和判定

例. 设 A 为 n 阶实对称矩阵. 证明 R(A) = n ⇐⇒ 存在一个 n 阶实方阵 B 使得
AB + BTA 正定.

证明. 显然 AB + BTA 是对称的, 且

xT(AB + BTA)x = (Ax)TBx + (Bx)T(Ax) = 2[Ax, Bx].

若 R(A) = n, 令 B = A, 则当 x ̸= 0 时, Ax ̸= 0, 从而

[Ax, Bx] = ∥Ax∥2 > 0.

若 R(A) < n, 则存在 x ̸= 0 使得 Ax = 0, 从而 [Ax, Bx] = 0, AB + BTA 不正定.
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例: 正定的性质和判定

例. 设 x 是实数, 证明

∣∣∣∣∣∣∣∣∣
10 2 3 5
2 10 1 −1
3 1 10 x
5 −1 x 10

∣∣∣∣∣∣∣∣∣ ⩽ 10000.

证明. 设 A 为题述方阵.

它的前三个顺序主子式

10 > 0,

∣∣∣∣∣10 2
2 10

∣∣∣∣∣ = 96 > 0,

∣∣∣∣∣∣∣
10 2 3
2 10 1
3 1 10

∣∣∣∣∣∣∣ = 872 > 0,

若 |A| ⩽ 0, 命题显然成立. 若 |A| > 0, 则 A 正定, 从而特征值全正. 因此

|A| = λ1λ2λ3λ4 ⩽
(λ1 + λ2 + λ3 + λ4

4

)4
= 10000.
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正定的应用: 函数极值 非考试内容

实对称阵可用于判断多元函数的极值.

设 f(x) = f(x1, . . . , xn) 是一个 n 元实函数,

a 是其定义域内一点, 且 f 在 a 附近具有连续的二阶偏导数. 记 f ′′
ij = ∂2f

∂xi ∂xj
, 则

f ′′
ij = f ′′

ji. 于是 A = (f ′′
ij(a)) 是 n 阶实对称阵.

定理. 设 f 在 a 处各阶偏导均为零.

(1) 若 A 正定, 则 f 在 a 处取极小值;
(2) 若 A 负定, 则 f 在 a 处取极大值.

若 A 不定, 则无法判断 a 是否是极值点.

线性代数 ▶第三章 相似和合同 ▶ 3 实对称阵的合同 ▶B 正定二次型
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合同的应用: 奇异值分解 非考试内容

对于一般的 m × n 实矩阵 A, 我们有奇异值分解

A = Um×mΣm×nV T
n×n,

其中 U , V 分别是 m, n 阶正交阵, Σ 是 m × n 型对角阵, 对角元非负且按降序排列.

首先对 ATA 这一半正定对称阵做正交合同对角化

ATA = V TΛV , V = (v1, . . . , vn), Λ = diag(λ1, . . . , λn), λ1 ⩾ · · · ⩾ λn ⩾ 0.

奇异值是指 σi =
√

λi. 令 Σ ∈ Mm×n 为对角阵, 对角元为 σ1, . . . , σn.

对于 1 ⩽ j ⩽ r = R(A), 令 uj = 1
σj

Avj , 设 ur+1, . . . , um 是 ATx = 0 的一组标准
正交基础解系, 则 U = (u1, . . . , um) 是正交阵, 且 A = UΣV T.
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合同的应用: 奇异值分解与压缩/降噪算法 非考试内容

注意到, 如果 U ′ 是 U 的前 r 列, V ′ 是 V 的前 r 行, Σ′ 是 Σ 的前 r 行 r 列,

则

A = U ′
m×rΣ′

r×rV ′
r×n,

其中 Σ′ 是 A 奇异值降序的对角阵, U ′, V ′ 为列/行为标准向量且两两正交的矩阵.

这意味着当 r 相比 m, n 较小时, 只需存储 (m + n + 1)r 个元素即可还原 A. 这是一
种无损压缩算法. 如果我们只截取前 k < r 个奇异值以及对应的 U , V 部分, 则可以对 A
进行有损压缩到 A′. 例如 A 表示一张图像的像素信息, 保留它较大的奇异值往往对它的
信息影响很小. 有时候, 我们甚至需要主动舍弃较小的奇异值, 只保留较大的奇异值来实
现信号降噪.

矩阵还有诸如 LU 分解, QR 分解, 科列斯基分解等. 这些分解往往都在压缩或降噪
中发挥着作用.

当 m = n = 3 时, 可以看出线性变换可以分解为旋转、放缩、旋转的复合.

线性代数 ▶第三章 相似和合同 ▶ 3 实对称阵的合同 ▶B 正定二次型
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