Hits:
Abstract:To date, various studies have been dedicated to the development of cholesteric liquid crystal (CLC) microdroplet omnidirectional lasers. In this work, a stable and tunable multi-mode laser emission is achieved by designing a dye-doping CLC microdroplet. In such a structure, the polymer network only exists on the surface, maintaining stability while providing tunability, and due to the uneven distribution of the pitch, it leads to multi-mode laser emission. A large number of microdroplets are produced quickly via a new method based on ultrasonic separation. During the reaction, we introduce interfacial polymerization where monomers and photoinitiator are respectively distributed inside and outside the microdroplets through mutual diffusion, which enables one to make the polymer network exist on the surface instead of the interior. The obtained microdroplet-based multi-mode laser is shown to possess stability and tunability, demonstrating a great potential for flexible devices and 3D displays.
Translation or Not:no