龚淼
已经得到个称赞     给我点赞
  • 副教授
  • 硕士生导师
  • 教师拼音名称:Gong Miao
  • 出生日期:1989-07-29
  • 电子邮箱:
  • 入职时间:2017-01-11
  • 所在单位:土木与水利工程学院 市政工程系
  • 学历:博士研究生毕业
  • 办公地点:土木楼201B
  • 性别:
  • 联系方式:15156884072
  • 学位:工学博士学位
  • 在职信息:在职
  • 毕业院校:河海大学
  • 学科:环境工程
    市政工程
  • 个人简介
  • 研究方向
  • 社会兼职
  • 教育经历
  • 工作经历
  • 团队成员
  • 其他联系方式

个人简介:

合肥工业大学土木与水利工程学院副教授,硕士生导师,主要研究以污水厂污泥为主的有机固废及难降解工业废水的处理处置与资源化利用。围绕有机固废、生物质能源、水环境等领域,探索固废处置及资源化利用技术和水污染控制理论与技术的研究。主持国家自然科学基金项目、安徽省自然科学基金项目、校科研专项及企业委托课题等项目,参与“十三五”水专项、国家重点研发计划、国家自然科学基金等多项课题。在Waste Management、Bioresource Technology、Renewable Energy、International Journal of Hydrogen Energy和Journal of Environmental Chemical Engineering等本领域主流期刊共发表论文40余篇,其中第一/通讯作者论文16篇,论文总被引1300余次,H指数18,共授权国家发明专利3项。

研究方向:

  • 难降解有机废水的超临界水氧化处理

  • 有机固废水热转化资源化与产物安全处置

育及工作经历:

2022年01月—至今               合肥工业大学,土木与水利工程学院,市政工程系,副教授

2017年01月—2021年12月   合肥工业大学,土木与水利工程学院,市政工程系,讲师

2015年09月—2016年09月   York University,Lassonde School of Engineering,联合培养博士

2011年09月—2016年12月   河海大学,环境学院,环境科学与工程,工学博士

2007年09月—2011年06月   河海大学,环境学院,给水排水工程,工学学士

招生信息:

欢迎广大给排水、环境工程等专业勤奋好学、热爱科研的同学报考硕士研究生,年度招生计划2-3人,请于复试前联系。

承担的科研项目:

(1)国家自然科学基金青年项目:基于氮元素积聚途径阻断的超临界水气化副产物焦油抑制研究,2021-2023年,主持。

(2)工业废水及环境治理安徽省重点实验室开放课题项目:巢湖打捞藻泥水热液化制低氮生物油研究,2023-2025年,主持。

(3)合肥工业大学“学术新人提升计划B”项目:市政污泥超临界水气化副产物焦油生成规律及调控机制研究,2021-2022年,主持。

(4)安徽省自然科学基金项目:路易斯酸复合过氧化氢在污泥超临界水反应中促氢抑焦协同机理研究,2018-2020年,主持。

(5)合肥工业大学“学术新人提升计划A”项目:脱水污泥超临界水气化过程中磷的转化与回收,2018-2019年,主持。

(6)合肥工业大学博士专项基金项目:脱水污泥超临界水气化过程中多环芳烃生成与抑制研究,2017-2019年,主持。

(7)企业委托横向项目:高校合同节水技术提升服务与报告编制,2023年,主持。

(8)企业委托横向项目:城市雨水管网混流污水截留井技术提升,2019年,主持。

代表性研究成果:

[1] Wang Y, Feng A, Li C, Xu Q, He X, Du Y, Gong M*. Combining thermal–alkaline hydrolysis pretreatment with catalytic supercritical water gasification for hydrogen production from sewage sludge. Journal of Water Process Engineering 2024;59:105062. https://doi.org/10.1016/j.jwpe.2024.105062

[2] Gong M*, Chu H, Feng J, Su Y. Regulating the distribution of phosphorus in sewage sludge hydrothermal carbonization products by complexation pretreatment. Journal of Environmental Chemical Engineering 2024;12:111921. https://doi.org/10.1016/j.jece.2024.111921

[3] Gong M*, Hu J, Xu Q, Fan Y. Catalytic gasification of Enteromorpha prolifera for hydrogen production in supercritical water. Process Safety and Environmental Protection 2023;175:227-237. https://doi.org/10.1016/j.psep.2023.05.027

[4] Gong M*, Wang M, Wang L, Feng A, Hu J. Degradation of tetracycline hydrochloride in sub- and supercritical water with and without oxidation. Process Safety and Environmental Protection 2022;162:373-383. https://doi.org/10.1016/j.psep.2022.04.030

[5] Gong M*, Wang L, Hu J, Feng A, Wang M, Fan Y*. Influence of reaction parameters on the fate of nitrogen during the supercritical water gasification of dewatered sewage sludge. Waste Management 2022;151:28-38. https://doi.org/10.1016/j.wasman.2022.07.034

[6] Gong M*, Feng A, Wang L, Wang M, Hu J, Fan Y*. Coupling of hydrothermal pretreatment and supercritical water gasification of sewage sludge for hydrogen production. International Journal of Hydrogen Energy 2022;47:17914-17925. https://doi.org/10.1016/j.ijhydene.2022.03.283

[7] Li Z, Gong M*, Wang M, Feng A, Wang L, Ma P, Yuan S*. Influence of AlCl3 and oxidant catalysts on hydrogen production from the supercritical water gasification of dewatered sewage sludge and model compounds. International Journal of Hydrogen Energy 2021;46:31262-31274. https://doi.org/10.1016/j.ijhydene.2021.07.028

[8] Gong M*, Li Z, Wang M, Feng A, Wang L, Yuan S*. Effects of Lewis acid on catalyzing gasification of sewage sludge and model compounds in supercritical water. International Journal of Hydrogen Energy 2021;46:9008-9018. https://doi.org/10.1016/j.ijhydene.2020.12.207

[9] Zhang H, Zhang R, Ling Z, Li W, Yan Y, Gong M*, Ma J*. Partial oxidation of phenolic wastewater using NaOH and Ni addition for hydrogen production and phenolics degradation in supercritical water. Separation and Purification Technology 2021;268:118685. https://doi.org/10.1016/j.seppur.2021.118685

[10] Gong M*, Wang Y, Fan Y, Zhu W, Zhang H, Su Y. Polycyclic aromatic hydrocarbon formation during the gasification of sewage sludge in sub- and supercritical water: Effect of reaction parameters and reaction pathways. Waste Management 2018;72:287-295. http://dx.doi.org/10.1016/j.wasman.2017.11.024

[11] Gong M, Nanda S, Romero MJ, Zhu W, Kozinski JA*. Subcritical and supercritical water gasification of humic acid as a model compound of humic substances in sewage sludge. The Journal of Supercritical Fluids 2017;119:130-138. http://dx.doi.org/10.1016/j.supflu.2016.08.018

[12] Gong M, Nanda S, Hunter HN, Zhu W, Dalai AK, Kozinski JA*. Lewis acid catalyzed gasification of humic acid in supercritical water. Catalysis Today 2017;291:13-23. http://dx.doi.org/10.1016/j.cattod.2017.02.017

[13] Gong M, Zhu W*, Zhang HW, Su Y, Fan YJ. Polycyclic aromatic hydrocarbon formation from gasification of sewage sludge in supercritical water: The concentration distribution and effect of sludge properties. The Journal of Supercritical Fluids 2016;113:112-118. http://dx.doi.org/10.1016/j.supflu.2016.03.021

[14] Gong M, Zhu W*, Fan YJ, Zhang HW, Su Y. Influence of the reactant carbon–hydrogen–oxygen composition on the key products of the direct gasification of dewatered sewage sludge in supercritical water. Bioresource Technology 2016;208:81-86. http://dx.doi.org/10.1016/j.biortech.2016.02.070

[15] Gong M, Zhu W*, Zhang HW, Ma Q, Su Y, Fan YJ. Influence of NaOH and Ni catalysts on hydrogen production from the supercritical water gasification of dewatered sewage sludge. International Journal of Hydrogen Energy 2014;39:19947-19954. http://dx.doi.org/10.1016/j.ijhydene.2014.10.051

[16] Gong M, Zhu W*, Xu ZR, Zhang HW, Yang HP. Influence of sludge properties on the direct gasification of dewatered sewage sludge in supercritical water. Renewable Energy 2014;66:605-611. http://dx.doi.org/10.1016/j.renene.2014.01.006

邮箱:
  • 邮编:
  • 通讯/办公地址:
  • 办公室电话: