开彩红  (教授)

博士生导师 硕士生导师

电子邮箱:

入职时间:2011-10-10

所在单位:信息与通信工程系

学历:研究生(博士)毕业

办公地点:翡翠科教楼A605-2

性别:女

联系方式:chkai@hfut.edu.cn

学位:博士学位

在职信息:在职

毕业院校:香港中文大学

学科:通信与信息系统
信号与信息处理
信息与通信工程其他专业

当前位置: 中文主页 >> 科学研究 >> 论文成果

Dependency-aware Parallel Offloading and Computation in MEC-enabled Networks

点击次数:

影响因子:3.436

DOI码:10.1109/LCOMM.2022.3142419

所属单位:School of Computer Science and Information Engineering, Hefei University of Technology

发表刊物:IEEE Communications Letters

项目来源:Fundamental Research Funds for the Central Universities of China under Grant JZ2021HGTB0081 Anhui Pr

关键字:Mobile edge computing, hybrid-dependency, parallel offloading and computation

摘要:This letter proposes an effective dependency-aware subtask offloading and computation scheme in mobile edge computing (MEC) enabled networks, where we construct sequential execution windows of the MEC server by incorporating the hybrid dependencies among subtasks of an application, and the subtasks within the same subtask execution window could be offloaded and computed in parallel. By doing so, the completion delay and energy consumption of the application can be reduced. To make the proposed scheme achieve the minimum completion delay and energy consumption, we further jointly optimize the transmission rate and start execution time of subtasks within each execution window. The formulated problem is non-convex and difficult to solve. To make it tractable, we design a bisection search and successive convex approximation based iterative algorithm. Simulation results validate that compared with other existing schemes, our proposed scheme could reduce the summation of the completion delay and energy consumption by 10.36%.

合写作者:Shifeng Xiao,Yibo Yi,Min Peng

第一作者:Caihong Kai

论文类型:期刊论文

通讯作者:Wei Huang

学科门类:工学

文献类型:J

ISSN号:1558-2558

是否译文:

发表时间:2022-01-22

收录刊物:SCI、EI

下一条: Deep Reinforcement Learning Based User Association and Resource Allocation for D2D-enabled Wireless Networks