开彩红  (教授)

博士生导师 硕士生导师

电子邮箱:

入职时间:2011-10-10

所在单位:信息与通信工程系

学历:研究生(博士)毕业

办公地点:翡翠科教楼A605-2

性别:女

联系方式:chkai@hfut.edu.cn

学位:博士学位

在职信息:在职

毕业院校:香港中文大学

学科:通信与信息系统
信号与信息处理
信息与通信工程其他专业

当前位置: 中文主页 >> 科学研究 >> 论文成果

Max-Min Fairness in IRS-Aided MISO Broadcast Channel via Joint Transmit and Reflective Beamforming

点击次数:

DOI码:10.1109/GLOBECOM42002.2020.9348016

所属单位:School of ComputerScience and Information Engineering, Hefei University of Technology

发表刊物:GLOBECOM 2020 - 2020 IEEE Global Communications Conference

项目来源:National Natural Science Foundation of China under Grants 61971176, and 61901156, Anhui Provincial

关键字:Intelligent reflecting surfaces, broadcast channel, reflective beamforming

摘要:The potential application of intelligent reflecting surfaces (IRSs) for future wireless cellular communication systems has motivated the study of metasurface for achieving additional space degree of freedom, where IRS is used to enhance the desired signal strength and suppress the interference. In this paper, by using the additional design degree of freedom provided by the IRS, we jointly optimize the transmit beamforming vector at the BS and the reflective beamforming vector at the IRS to maximize the minimum rate in the IRS-aided multi-user multiple-inputsingle-output broadcast channel (MISO-BC), subject to the unit modulus constraints of the reflective beamforming vector. In order to solve the non-convex optimization problem, we propose an efficient algorithm based on alternating optimization. In particular, we optimize the transmit beamforming vectors via the second-order cone problem (SOCP) and reflective beamforming vector by using the semi-definite relaxation (SDR). Numerical results show that the use of IRS leads to significant higher SINR values than benchmark schemes without IRS."

合写作者:Wenqi Ding,Wei Huang

第一作者:Caihong Kai

论文类型:会议

学科门类:工学

文献类型:C

ISSN号:2576-6813

是否译文:

发表时间:2020-12-07

收录刊物:EI

上一条: Optimal Scheduling and Power Control for In-Band Full-Duplex Communication in WLANs

下一条: Collaborative Cloud-Edge-End Task Offloading in Mobile-Edge Computing Networks With Limited Communication Capability