开彩红  (教授)

博士生导师 硕士生导师

电子邮箱:

所在单位:信息与通信工程系

学历:研究生(博士)毕业

办公地点:翡翠科教楼A605-2

性别:女

联系方式:chkai@hfut.edu.cn QQ:35276426

学位:博士学位

在职信息:在职

毕业院校:香港中文大学

学科:通信与信息系统
计算机应用技术
软件工程其他专业

Resource Allocation Design for RIS-enhanced Backscatter Wireless-powered Symbiotic Networks

点击次数:

影响因子:7.4

所属单位:School of Computer Science and Information Engineering, Hefei University of Technology

发表刊物:IEEE Transactions on Cognitive Communications and Networking

项目来源:the National Natural Science Foundation of China under Grants 61971176 and 62371180,the Anhui Provi

关键字:Symbiotic radio network, backscatter commu nication, reconfigurable intelligent surface

摘要:The integration of simultaneous wireless information and power transfer (SWIPT) with backscatter and reconfigurable intelligent surface (RIS)-aided communication provides a promis ing paradigm to reduce the energy consumption. In this paper, we propose a RIS-enhanced hybrid backscatter and wireless powered transmission scheme in the symbiotic radio network. Under this setting, we formulate the throughput maximization problem by jointly optimizing the transmit beamforming, pas sive beamforming, transmit power, backscatter coefficient, and slot allocation. Due to the coupled variables, the formulated optimization is non-convex. To solve it, an iterative algorithm is developed to decompose it into multiple subproblems. Specifically, we obtain the closed-form solutions for those variables in the single-user system. For the multi-user system, we solve the problem via the second-order cone programming (SOCP) and semi-definite programming (SDP) methods. Numerical simula tions show that the proposed hybrid transmission scheme can effectively improve the network throughput.

合写作者:Xinyue Hu,Wei Huang

第一作者:Yibo Yi

论文类型:期刊论文

通讯作者:Caihong Kai

学科门类:工学

文献类型:J

卷号:11

期号:1

页面范围:437-453

ISSN号:2332 - 7731

是否译文:

发表时间:2024-08-05

收录刊物:SCI、EI

上一条: Structured OFDM Modulation for XL-MIMO System with Dual-Wideband Effects

下一条: Vision Image Aided Near-Field Beam Training for Internet of Vehicle Systems