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Exponential sums

Let f(x) € Fy[x] be a polynomial over a finite field with ¢ = p? elements, where p is a

rational prime. Define the exponential sum

Si(f) = > (U@ e Z[¢, ).

z€lfy
A basic problem is

(1) as a complex number, |S1(f)| =7
(2) as a p-adic number, [S1(f)], =7
(3) as an algebraic number, deg S1(f) =?
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L-function

The first two questions have been studied extensively in the literature. Define

£t 1) = TT (1= Toey oy, (Fa)eee) ™ = exp (500 )
k

z€F),

where Si(f) = Yaer , &0 € ZIG).

L(t, f) is a rational function.

Write
L(t f) a Hj(l _ﬁjt)
’ [L(1 = ait)’
Then
k k
Sk(f) = Zai — ZBJ
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Sheaf

How to estimate the characteristic roots ; and 3;7 We need /-adic method. To
describe it, let's recall the definition of sheaves.

Given a topological space X, there is a site Top(X) with
(1) objects: the open subsets of X;
(

(3) coverings: normal open coverings.

2) morphisms: the injection of open sets;

A sheaf F on a topological space X over a field E is a contravariant functor
Top(X)°P — Vect/FE, which can be uniquely glued locally. That's to say, for any open
covering U = U;U;,
F) - [[Fw) = [[FUiny))
1 (2%}

is exact.
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Etale site

Let X be a scheme. Denote by X the site with

(1) objects: étale scheme X' — X;
(2) morphisms: étale morphisms;
(3) coverings: ¢; : X! — X' with X' = Ugp;(X)).

Fix a prime £ # p and let I be a finite extension of Qy. An f-adic sheaf is a sheaf on X
over E (which is constructible at every finite level).
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Swan conductor

Let K be c.d.v.f, with higher ramification groups I\"),r > 0. For any E-representation
M of P, we have a decomposition M = &M (z), such that

M©O)=MP, M@ =0, M@)®=M@),y>z>0.
We call = a break if M(z) # 0. Define

Sw(M) = ZxdimM(:p).

On the generating fields of Kloosterman sums » 1 Exponential Sums 2021-05-17
BHOOONOOOOBOOOOOOOOOO®\BOO0O0OO0O



Curves

Let C be a proper smooth geometrically connected curve over a perfect field IF, with
function field K = F(C). For any closed point x € C(FF), we have the completion K.

For any non-empty open U C C, we have an equivalence of abelian categories

lisse E-sheaves on U — Repymi (U, 7))

Since 7 (U, 7) is a quotient of Gal(K/K), the decomposition group D, C Gal(K/K)
acts on F5. We can define Swan conductor of F at x. If x € U, the action of I, is trivial.

We will take F =TF,,C = P! and U = Gy,.
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/-adic method

Assume that p, € E. Deligne constructed a certain locally free of rank one /-adic
sheaf Fy(f) over E on G, F, = SpecF,[X], such that

L(t, f) = [] det(1 — tFrob, HL) D™

and
Sk(f) = _(—1)"Tr(Frob® H.).

i
Here, Frob is the geometric Frobenius (inverse of o — a?), H. = H.(G, 7, Fe(f)) is the
compact cohomology.
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/-adic method, continue

Denote by w;; the eigenvalues of Frob on H’, then

Denote by B; = dimpg HZC the Betti number.

wi; is an algebraic integer and all its conjugates over (Q has same absolute
value ¢"s/2, where the weight 0 < r;; < i are integers.

Thus A
|Sk:| < ZBiqkz/Q-
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General case

In general,

1) V aclosed variety over [, of AN,
2) v a non-trivial additive character on Fy, ¢, = ¢ o Trp , /g,
q

(1)

(2)

(3) f aregular function on V' defined over I,

(4) x a multiplicative character on F), xx = x o NF /¥,
(

5) g an invertible regular function on V.

Define

Se= Y Ye(f(@)x(g(x)).

IEV(]Fqk)

Then Deligne's results still hold in this case. Moreover, Bombieri proved that the number
of characteristic roots is at most

(4maxdeg V +1,deg f + 5)*V+1,
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Kloosterman sums

Now we will consider
V=V(X1--X,—a), f=Xi1+ - +X,

Let x = x1, ..., Xn be an unordered n-tuple of multiplicative characters y; : F; — Hg—1.
Define the Kloosterman sum as

Kln(wa X4, CL) = Z X1 (:Ul) & i Xn(xn)¢(TrFq/Fp(x1 + -+ xn))

T1-Tn=a
z;€Fq

In this case, there are n characteristic roots with same weight n — 1. Hence
|K1,| < ng=1/2,
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Galois action

Clearly, Kl,, € Z[ppc], where
¢ = lem;ord(x;)

divides ¢ — 1. Write

Gal(Q(upe)/Q) = 017w | t € (Z/PL)",w € (Z/cZ)*,

where

Ut(cp) = C]t)a o-t(CC) = C-Ca
Tw(Cp) = (ps Tw(le) = (e -
A basic observation tells
UtTwKI w7X7Q7 HX le aXU))q’atn)'

To study the generating fields of Kl,,, we need to consider the distinctness of different
Kloosterman sums.
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Trivial character

When x =1 =1,...,1 is trivial, it's easy to see that
a,b conjugate = Kly(,1,q,a) = Kln(4,1,¢,b).

When p > (2n2¢ 4+ 1)2 (Fisher), or p > (d —1)n+2 and p does not divide a certain integer
(Wan), this is necessary. In general, it's conjectured that it's true when p > nd. Thus

p—1

degKly(¢,1,q,a) = 1.0

under these conditions.
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Kloosterman sheaves

For our purpose, we need a different sheaf. Deligne and Katz defined the Kloosterman
sheaf

Kl = Kln,q(¢> X)
on Gy, ® F, = SpecFy[X, X 1], with the following properties:
(1) Klis lisse (locally constant at every finite level) of rank n and pure of weight n — 1.
(2) For any a € F), Tr(Frob,, Klz) = (—1)" K1, (¢, x, ¢, ).
(3) Klis tame at 0 (Swan= 0).
(4)

4) Kl is totally wild with Swan conductor 1 at co. So all co-breaks are 1/n.
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Fisher’s descent

Fisher gave a descent of Kloosterman sheaves along an extension of finite fields. For

any a € F, he defined a lisse sheaf F,(x) on G, ® [}, such that

FiGn@F, = @  (tr (@) Kl(boo !, xo0 ).
o€Gal(Fq/Fp)

(1) Fa(x) is lisse of rank n and pure of weight d(n — 1).

(2) For any t € FX, Tr(Froby, Fu(x);) = (—1)" VK1, (v, x, ¢, at™).

(3) Fa(x) is tame at 0 and its co-breaks are at most 1.
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Key lemma

Lemma

Let 7, F' be lisse sheaves on G,, ® F,, of same rank r and pure of the same
weight w. Assume that there is a root of unity A\ such that for any ¢t € F%,

we have
Tr(Froby, F;) = ATr(Froby, F5).

Let G be a geometrically irreducible sheaf of rank s on G, ®F,, pure of weight
w, such that G | G, ®F, occurs exactly once in F | G,,, ®F,. Then G | G,,,®F,
occurs at least once in 7' | G,,, ® F,, provided that p > [2rs(My + My,) + 1]2,
where ), is the largest 7)-break of F @ F'.
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Key lemma, proof

Assume not. Applying the Lefschetz Trace Formula to GY ® F and GY ® F’, we have

2 2

> (=1)"Tr(Frob, H.(GY ® F)) Z )“Tr (Frob, HL(GY ® F')).

1=0 1=

Apply Euler-Poincaré formula

he(F) = he(F) + hi(F)
=rank F - xc(Gp, ® Fp) — Swo(F) — Swoo(F)

to estimate Tr(Frob, H.) (weight < 1 by Weil II).

On the generating fields of Kloosterman sums P 2 Kloosterman sheaves
BHOOOOOOOOBOOOOOEOOOO®BO0O000O0O

2021-05-17



Corollary

The n-tuple x is called Kummer-induced if there exsists a non-trivial character A such
that x = xA := x1A, ..., xnA as unordered n-tuples. In this case,

[1x =TI(xA) = A" []x and thus A" = 1.

Assume that p > 2n + 1 and x is not Kummer-induced. Then F,(x) has a highest
weight with multiplicity one. Thus it has a subsheaf G, (x) such that, as representations of
the Lie algebra g(Fa(x)), Ga(x) is the irreducible sub-representation with highest weight.
Moreover, it is geometrically irreducible and occurs exactly once in F,(x) over G, ® F,,.
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Corollary, continue

Corollary

Let a,b € F and let x and p be n-tuples of multiplicative characters ;, p; :
Fy — Q, . Assume that p > (2n2% +1)2, x is not Kummer-induced and

Kl, (v, x, ¢, a) = AK1,, (¥, p, q,b)

for a fixed root of unity A € ;1,_1. Then G,(x) ® EHY | Gy, ® F,, occurs at
least once in Fy(p) ® L1715 | Gm ® Fp.

Here L, is a rank one lisse sheaf on G,, ® I}, such that for t € F 5,

Tr(Froby, (£y)7) = x(¢):

On the generating fields of Kloosterman sums P 2 Kloosterman sheaves 2021-05-17
BHOOOOOOOOBOOOOOOOMOO®BOO0O0O0O



Corollary, proof

Denote by

F = Fa(x) © L% F'=Fp)® L1z 9="9.(x) @ L%

For t € IF';, we have oy A = A and thus

( )(n l)dTr FrObt7 HX 1/}7X7Q7 at” )
=0t (Kl (1/}7 X,q,a )) = )‘Ut(Kana P4, ))
=A[]2(t) - Klu (¥, p,q,bt™) = (—1) "~ DINTr (Froby, 7).

Apply Lemma to r = s =n%, My =0, My < 1
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Distinctness

Now
ga(X) ® ’CHY — ]:b(p) & [,Hﬁ, gb(p) ® Enﬁ — ]:a(X) X [,HY.

Thus the highest weight A\;(x) = \s(p). Derived from this, and combining Fisher’s
arguments, we have:

Let a,b € F;. Assume that x,p are not Kummer-induced and neither of
them is of type (£1,&%,1, A2)&. If p > (2027 + 1) and

KL, (¥, x,q,a) = MKl (¢, p, q,b)

for some \ € p,_1, then there exists ¢ € Gal(F,/F,) and a multiplicative
character 7, such that b = o(a) and p = - (x o 0~!) as unordered tuples.
Moreover, either both Kloosterman sums vanish or 7(b) = \~L.
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Non-vanishingness

The last step is to show the non-vanishingness.

If p> (3n — 1)Cx —n and for any i,j, x; = x; if x{ = x}, then K1,(¥, x, ¢, a)
is nonzero. Here

Cy = n%z;x lem (ord(x;), ord(x;)) (1)
is the supremum of least common multipliers of the orders of any two char-
acters in .
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Non-vanishingness, continue

We can express Kl,, as Gauss sums

q—2 n
(¢— DKl(¢,x,q,a) = > w™(a) [ g(m + i)
m=0 =1

by Fourier transform on F ¢, where y; = w®t for a Teichmiiller character. What we need to
do is to proof there is a unique m such that the valuation of i ; g(m + s;) is minimal.
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Main result

If p > max (2n%? +1)2,(3n — 1)Cy —n and for any i,j, x; = x; if x? = X7
then K1, (¥, x,¢,a) generates Q(u,.), where H consists of those 0,7, such
that there exists an integer 5 and a character 7 satisfying

=Xl A =1, x¥ = nx®, n(a) = [[x“(0)-

Here ny = (n,p — 1), i = #F,(a®" /") and a; € F) such that aV/™ =

Np /Fp(a(lfp)/nl) = g(l—a1)/m1
a1
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An example: n = 2 case

Let x = 1, x, where x is a multiplicative character of order ¢ # 2. If
p > max (2241 +1)2 5¢ — 2, then K1(¢, x, p?, a) generates Q(up)”, where

Tq10a15,0— 1,7-1), ifx(=1)=1,x(a) =1,
T—q10a1,0— 1) if x(—1) = 1,X(a) = X(al) =—1;
T 0ag, 0-1), if x(—1) =1, x(a)® # 1;

( (
( (
( (
(Tg10—a1, T—10-1), if x(—1) =
(T Tar, T—1) if x(—1) =
(Tq10ay, T10-1),  if x(
(r (
( (

Tyo120_ga/2); if x(—1

Ta0a1> if x

q1 = #F,(a1=P)/2) a1 = a1=1)/2 and « is the order of x(a1) € pp_1.
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Remark

Consider the Kloosterman sums
Sk = K1<w7 X © NIFqk/]Fq: qka (l).

If p > max (2n2% + 1)2, (3n — 1)Cy, — n, then Q(Sk) = Q(upc)™, where H consists of
those 017, such that there exists an integer 3 and a character n on F satisfying

B
t=Xa, A" =1, x"=nx", nla) =~ [[x"{).""=1.

Thus Q(Sk) = Q(Sk—_.) since v¢ = 1.
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Remark, continue

The L-function
o0 Tk
L(T) = —S
(T) = exp (Z k k)

k=1
is a rational function. Thus the sequence Si;, is linear recurrence sequence. The sequence
Q(Sk) > is periodic of period r for some N (Wan, Yin). Thus if
p > max (2n2d(N+”) + 1)27 (3n — 1)Cy, — n, the generating field of S, is determined by
the previous equations for any k. For this purpose, we need to decrease the bound
(2n2? +1)? and estimate the period  and N. We conjecture that S;, has the predicted

generating field if p > 3ndc.
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