ON NON-CONGRUENT NUMBERS AS MULTIPLES OF
NON-CONGRUENT NUMBERS

SHENXING ZHANG

ABSTRACT. Let n = PQ be a square-free positive integer, where P is a product
of primes congruent to 1 mod 8, and () is a non-congruent number with a trivial

2-primary Shafarevich-Tate group. Under certain conditions on the Legendre

symbols (%) for primes p | P,q | @, we establish a criteria characterizing when

n is non-congruent with a minimal or a second minimal 2-primary Shafarevich-
Tate group. We also provide a sufficient condition for n to be non-congruent
with a larger 2-primary Shafarevich-Tate group. These results involve the class
groups and tame kernels of quadratic fields.

1. INTRODUCTION

1.1. Background. A square-free positive integer n is called congruent if it is the
area of a right triangle with rational lengths. This is equivalent to say, the Mordell-
Weil rank of E,, over Q is positive, where

E, :y*>=2%—n’z

is the associated congruent elliptic curve. Denote by Sely(E,,) the 2-Selmer group
of E,, over Q and

s2(n) := dimp, <
the pure 2-Selmer rank. Then
s2(n) = ranky F, (Q) + dimp, III(E,)[2]

Sely(E,,)

En((@)[Q]> = dimgp, Sely(E,) — 2

by the exact sequence
0— E,(Q)/2E,(Q) — Sely(E,) — II(E,)[2] — 0,

where III(E,,) is the Shafarevich-Tate group of E, /Q.

Certainly, sa(n) = 0 implies that n is non-congruent with III(E,)[2*°] = 0.
The examples of sz(n) = 0 can be found in | 1 ] and | ], which
are corollaries of Monsky’s formula (2.8) for sa(n). This case is fully characterized
in terms of the 2-primary class groups of imaginary quadratic fields, and the full
Birch-Swinnerton-Dyer conjecture holds, see | , Theorem 1.1, Corollary 1.3]
and [ , Theorem 1.2].
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~

The examples of non-congruent n with II(E,)[2°°] & (Z/2Z)? can be found in
[ I, [ I, | and | ]. Denote by
20-14
i)
the 2%-rank of a finite abelian group A. Denote by hoa (m) the 2%-rank of the narrow
class group A,, of the quadratic field Q(y/m). Denote by (a, b), the Hilbert symbol.

(1.1) raa (A) = dim]p2<

Theorem 1.1 (] , Theorem 1.1]). Let n = py---pr = 1 mod 8 be a square-
free positive integer with prime factors p; such that p; = 1 mod 4 for all i. The
following are equivalent:

e n is non-congruent with I(E,)[2%°] = (Z/27.)?%;

e hy(—n) =1 and hs(—n) = (d — 1)/4 mod 2,
where d is a positive divisor of n such that either (d,—n), = 1,Yv,d # 1,n, or
(2d,—n), = 1,Vo.

Theorem 1.2 (][ , Theorem 1.1]). Let n = p1---pr = 1 mod 8 be a square-
free positive integer with prime factors p; such that p; = +£1 mod 8 for all i. The
following are equivalent:

e n is non-congruent with NI(E,)[2%°] = (Z/27)?%;
e hy(—n)=1,hg(—n) = 0.
Theorem 1.3 (] , Theorem 5.3]). Let n = p;---pr, = 1 mod 8 be a square-

free positive integer with prime factors p; such that p; = £1 mod 8 for all ©. The
following are equivalent:

e 2n is non-congruent with 11(Ey,)[2>] = (Z/27)?;
o hy(—n) =1 and d =9 mod 16,
where d is the unique divisor of n such that (d,n), = 1,Vv and d # 1,d =1 mod 4.
The condition that d = 9 mod 16 is equivalent to hg(—n) + hg(—2n) = 1, see
Proposition 2.9. This recovers | , Theorem 1.6].
Qin in [ , Theorem 1.5] proved that if p = 1 mod 8 is a prime with trivial
8-rank of the tame kernel K>Ogq(p), then p is non-congruent. Moreover, if the
4-rank of K2Oq( p) is 1, then II(E,/Q)[2>] = (Z/4Z)*.

1.2. Main results. In this paper, we want to construct non-congruent numbers n
with the form n = P(Q), where

e P is a product of different primes = 1 mod 8,
e () is a non-congruent number prime to P, such that III(Eg)[2°°] = 0.

Denote the prime decomposition of n by
n = ged(2,Q)p1 -+ prdi - e,
where P = py -+ pg, Q@ = ged(2,Q)q1 - - - qo. Assume that there exists two vectors
u=(uy,...,u)t €F5 and v=(vy,...,0)" €F}
such that the Legendre symbol (Z—]) = (—1)“%. Denote by
Up =diag{uy,...,ux} and Ap = (aij)kxk
matrices defined over Fy, such that the Hilbert symbol (p;, —P),, = (—=1)%9.
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1.2.1. s2(n) =0.

§:1Uj:1, pL=---=pr =1mod8

Theorem 1.4. Assume that Zle u; =0,>
and Q is non-congruent with II(Eq)[2°°] = 0. The following are equivalent:
e 1 is non-congruent with II(E,)[2°°] = 0;
e Ap + Up is invertible.
1.2.2. s9(n) =2.

Theorem 1.5. Assume that Ele U = O,Zﬁzl vj=1,p = =pp=1mod8
and Q is non-congruent with I(Eq)[2°°] = 0. The following are equivalent:
e n is non-congruent with U1(E,,)[2>°] = (Z/27)%;
e corank(Ap +Up) =1 and (%) = —(%),
where d # 1 is a positive divisor of P such that (d,—P),, = (—1)",Vp; | d;
(d,—P)p, =1,Yp; | %, and (o, B,7) is a primitive positive solution of da? + %ﬁ2 =
472,
Here, a primitive positive solution of do + 352 = 4~2 is an integer solution such
that o, 8,y > 0 and ged(a, 8,7) = 1.
When u = 0, we obtain the following result:
Corollary 1.6. Assume that (5—) =1,Vi,j, p1 = =p;, = 1 mod 8 and Q is
non-congruent with III(Eg)[2°°] = 0. The following are equivalent:
e n is non-congruent with NI(E,)[2°°] = (Z/27)%;
e hy(—P)=1and (L) = (-1
o hy(—P) =1 and (%) = (—1)"*F=wm),
where (v, 3,7) is a primitive positive solution of Pa? + QB% = 4~2.
When ¢ = 0, we obtain the following results, which are special cases of Theo-
rems 1.1,1.2 and 1.3.

Corollary 1.7. Let n = p1---px be a square-free integer where p1 = -+ = pg =
1 mod 8.
(1) The following are equivalent:
e n is non-congruent with NI(E,)[2°°] = (Z/27Z)?;
e hy(—n) =1 and hg(—n) =0;
° 7“4(K20Q(\/ﬁ)) = 0.
(2) The following are equivalent:
e 2n is non-congruent with II(Es,)[2%°] = (Z/27)?;
e hy(—n) =1 and hg(—n) + hg(—2n) = 1;
[ r4(K20Q(\/—72n)) = 0
1.2.3. General case.
Theorem 1.8. Assume that (5—;) =1,Vi,j, p1 =+ = pr = 1mod 8 and Q is

non-congruent with 1I(Eq)[2%°] = 0. If there is a decomposition P = fy --- f. such
that

o hy(—
* (;)
« (7)

p
%
fi

f?,) = 1,VZ',’
=1 for any i # j and prime factors p | fi,p" | f;;
=1ifi#j; (§) = (=)=,
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then n is non-congruent with I (E,,)[2%°] = (Z/27)*", where (s, Bi, ;) is a prim-
itive positive solution of fia? + fﬂﬂf = 4y2.

When ¢ = 0, we obtain the following results, where (1) is just [ , Theo-
rem 1.2].

Corollary 1.9. Let n = p1---pi be a square-free integer where p; = - -
1 mod 8.
(1) If there is a decomposition n = fy --- f,. such that
L] h4(—fi) = 1,h8(_fi) = O,Vi,'
e hg(—n)=r, or hg(—n) =71 —1 and [(2,v/—n)] ¢ AL, ;
. (ﬁ) =1 for any i # j and prime factors p | fi,p' | f;,
then n is non-congruent with (E,)[2°°] = (Z/2Z)*".
(2) If there is a decomposition n = fy -+ f,. such that
(] h4(7f1) = l,hg(ffl') = O,V'l:,'
e hg(—2n)=r;
. (5) =1 for any i # j and prime factors p | fi,p' | f;,
then 2n is non-congruent with II(Es,)[2%°] = (Z/2Z)?".

If
S
Ea

If

Let’s sketch the proof of these results. Since the congruent elliptic curve F,, has
full rational 2-torsion, the pure 2-Selmer group Sely(E,,) := Selz(E,)/En(Q)[2] can
be identified with a set of triples (di, ds,d3) € (Q*/Q*?)3, where dy, d2, d3 may be
taken as square-free integers. The local conditions for Selmer elements translate
into certain quadratic residue conditions, which in turn correspond to the 4-ranks
of class groups of associated quadratic fields. As established in [ |, En(Q) is
finite with ITI(E,,)[2°°] = (Z/27)**(™ if and only if the Cassels pairing on Sel)(F,,)
is non-degenerate. This condition can be expressed in terms of the 8-ranks of class
groups and the 4-ranks of tame kernels of associated quadratic fields.

1.3. Notations. Denote by
e ged(m,n) the greatest common divisor of integers m,n, where m # 0 or
n # 0;
e (a,b), the Hilbert symbol;
e [a,b], the additive Hilbert symbol, i.e., the image of (a,b), under the iso-
morphism {+1} > Fo;
. (%) = leb(a, b), the Jacobi symbol, where ged(a,b) =1 and b > 0;
e [%] the additive Jacobi symbol, i.e., the image of (#) under the isomor-
phism {41} = Fy;
e v, the normalized valuation on Q;
e 0=(0,...,0)Tand 1 = (1,...,1)7T;
e 79a(A) the 2%-rank of a finite abelian group A, see (1.1);
If n is a square-free positive integer, then we denote by
E, : y?* = 2% — n22 the congruent elliptic curve associated to n;
Sela(E,,) the 2-Selmer group of F,, /Q;
III(E,) the Shafarevich-Tate group of E,,/Q;
Sely(E,) := Sela(Ey,)/E,(Q)[2] the pure 2-Selmer group of E,,/Q;
s2(n) = dimp, Sely(E,,) the pure 2-Selmer rank of E,,.
If n is odd with a fixed ordered prime decomposition n = py - - - p, then we denote
by
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A, = ([pj, —nlp, ) 4., @ Matrix associated to n, see (2.2);
€

1

bue=Ducl=([3]....[5])

M,, (resp. May,,) tﬁé Monsk?matrix of E,, (resp. Es,), see (2.4) and (2.6);
U (d) = (vp, (d), ..., vp, (d))T a vector over FFy associated to 0 < d | n.

If m # 0,1 is a square-free integer, then we denote by

F,, = Q(y/m) a quadratic field;

R, the Rédei matrix of F),, with a submatrix R/, see (2.9) and (2.12);
A, the narrow class group of F,;

D,, the discriminant of F,;

O = Z + Zw,, the ring of integers of Fiy;

D the set of all square-free positive divisors of D,,;

O : D — Am[2] a two-to-one onto homomorphism, see Proposition 2.2;
haa(m) the 2%-rank of A,,;

K50, the tame kernel of F,,;

B,, = A, + Dy, /s a matrix associated to m, where n is the odd part of
|m].

D, .= diag{ [—] eees [pik]} a matrix associated to n and e, see (2.3);

2. PRELIMINARIES

2.1. The Monsky matrix. By the 2-descent method, Monsky in | , Appen-
dix] represented the pure 2-Selmer group

Selg (En)
Sel,(E,) = ——"2

N ]]E]

as the kernel of a matrix M,, over 5. Let’s recall it roughly. One can identify
Sela (E,,) with

{A = (d1,ds, d3) € (Q*/Q*?)3 : Da(Ag) # 0, dydads = 1 mod Q*?},
where Dy is a genus one curve defined by

Hi: —nt®’+ dgu% — d3u§ =0,
(2.1) Hy,: —nt®+ d3u§ — dﬂi% =0,

Hsz: 2nt? + dju? — daui = 0.
Under this identification, O, (n,0),(—n,0),(0,0) and other point (z,y) € E,(Q)
correspond to (1,1,1),(2,2n,n),(—2n,2, —n), (—n,n,—1) and (z —n,z + n,z) re-
spectively.

Let n be an odd positive square-free integer with an ordered prime decomposition

n =pp - pr. Denote by

2] L s
(22) Agn = An = (aij)kxk where Q5 = [pja —n}pi = [pl]’ ! # I3
[“25], i =,
and
. 3 3
2 D= dins{[£] . [£]}

Then A,,1 = 0 and corank A,, > 1.
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Monsky showed that each element in Sely(F,,) can be represented as (d1, do, d3),
where dy,ds,ds are all positive divisors of n. The system D, is locally solvable
everywhere if and only if certain conditions on the Hilbert symbols hold. Then we
can express Sely(F,) as the kernel of the Monsky matriz

R An+Dn,2 Dn,2
(2.4) M, ( Dy Ay tDy

via the isomorphism

Sely(E,) — Ker M,

2.5
. (i) > (712)).

where ¢y,(d) := (vp, (d), ..., vp, (d))T € % for any positive divisor d of n.

Similarly, each element in Sely(Ea,) can be represented as (di,da,ds), where
dy,ds,ds are all divisors of n and dy > 0,d3 = 1 mod 4. Then we can express
Sel,(E2,) as the kernel of the Monsky matrix

L AE + Dn72 Dmfl
(2.6) Mo, = ( Doy AL 4D,

via the isomorphism

Sely(Eay,) — Ker My,

2.7
- = (3441).

In both cases, we have

(2.8) s2(n) := dimg, Sely(E,,) = corank M,,.

2.2. The Cassels pairing. Cassels in | ] defined a (skew-)symmetric bilinear
pairing (—, —) on the Fo-vector space Sely(E,,). For any A € Sely(E,,), the equation
H; in (2.1) is locally solvable everywhere. Thus H; is solvable over Q by the Hasse-
Minkowski principal. Choose Q; € H;(Q) and let L; be a linear form such that
L; = 0 defines the tangent plane of H; at Q;. For any A’ = (d},d}, d}) € Sela(E,),
define the Cassels pairing

3
(A A) =) (A N), €Fy where (A A),=> [Li(P),d]],,

v i=1

where P, € Dj(Q,) for each place v of Q. This pairing is independent of the choice
of P,,Q; and the representative A. It is (skew-)symmetric and satisfies (A, A) = 0.

Lemma 2.1 ([ , Lemma 7.2]). The local Cassels pairing (—, —), =0 if

e v {200,

o the coefficients of H; and L; are all integral at v fori=1,2,3, and

e modulo Dp and L; = 0 by v, they define a curve of genus 1 over IF,, together
with tangents to it.
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2.3. The narrow class group. Let F,, = Q(/m) be a quadratic field, where
m # 0,1 is a square-free integer. We will use the notations introduced in §1.3.
Denote by N = N, /o the norm map. Fix an ordered decomposition of the odd
part n of |m|: n = p;y---pr. If 2| D, denote by pry1 = 2. Let ¢ be the number of
prime factors of D,,. Then the Gauss genus theory tells:

Proposition 2.2 (] , Chapter 7]). (1) The map On, : D, — Ap|2] de-
fined as
O (d) = [(d, )]
s a two-to-one onto homomorphism. In particular,
ha(m) = dimg, A, [2] = ¢ — 1.

(2) Let a be a non-zero fractional ideal of F,,,. Then the ideal class [a] € A2, if
and only if Na € NF,,.

When m < 0, the kernel of 6,, is {1, |m/|}.
To calculate hy(m), we need the Rédei matrix, which is defined as

(2.9) Ron = ([pjs mlp, Jexe-

Example 2.3. Let n = p; - - - p be an odd positive square-free integer. Denote by

o= ([Z] [2]) =D

When n = 1 mod 4, we have

R,=A,+ Dn,—l; R_,= (bf;&n TTZL]Q) ’
n,—1 n

. An + Dn,—2 bn,2 _ An + Dn,2 bn,2

me= (MU ) me= (M B).
When n = —1 mod 4, we have
An + Dn -1 bn 2
R, = ’ ’ s R_,=A,,
( b [7] )

_ An + Dn,72 bn72 _ An + Dn72 bn,2

ma = (M HE) me (M0 ).

One can see that the following are equivalent:

d € 9, N\NF,,;

X2 —mY? = dZ? is solvable over Q;

the Hilbert symbols (d,m), = 1, Vo;

e R,,d =0, where d = (v}, (d), ..., vp, (d))T.

Rédei showed that 6, induces a two-to-one onto homomorphism

(2.10) O : Doy " NE,, — Ap[2] NA2,,
which induces that

(2.11) hg(m) = corank R,,, — 1.
Denote by

(2.12) R, = ([pj, mp,kxe-
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If 2 | Dy, then R, is the submatrix of R, by removing the last row; otherwise
R/ =R,,. Since 1TR,, = 07, we have

(2.13) rank R), = rank R,,,.

See | | and | , Example 2.6].
The 8-rank hg(m) can be obtained by the following proposition, which is similar
to | , Proposition 3.6]. See also [ )

Proposition 2.4. For any d € Z,, N NF,,, let (a, B,7) be a primitive positive
solution of

da? — %BQ =442
Then

(1) 0,,(d) € AL, if and only if ([v,m]p,, ..., [7,m]pt)T eImR,,;

(2) Z§=1[%m]pi =0.
In particular, 6,,(d) € A}, if and only if b, , € ImR],, where n is the odd part of
m|.

Proof. Denote by o the non-trivial automorphism of Q(y/m). If p is an odd prime
factor of «, then p { m and (%) = 1. Thus (p) = pp? is split in F,,, and [y, m], = 0.
We will show that = = (da + Sv/m)/2 € Oy,.

e If d is odd and m is even, then both of o and 8 are even and x € O,,.

e If d,m are odd, then a and 8 have same parities. If moreover both of «
and (3 are odd, then 4 | (d —m/d), m =1 mod 4 and z € O,,.

e If d is even, then [ is even and x € O,,.

Certainly, x is totally positive and p | dy? = N(z). If both p,p? divide 2O,,, then

PO, | 2Oy and p | @, 8,7y, which contradicts to ged(a, 8,v) = 1. Hence only one

of p and p“ divides 2O,,. We may assume that p° | xO,, for each odd p | v.
Assume that d is odd. If v is odd, we have

(2.14) 20, =0 H(P”)%P(V) =~%0c"?,  where ¢ := Hp“l’(") with N¢ = v
ply ply

and ? = (d,wy,). If v is even, one can show that m is odd. Then both of o and S
are odd, 8 | (d —m/d) and m = 1 mod 8. Thus 20,,, = qq is split in F'. Similarly,
only one of q and q° divides ©O,,. We may assume that q° | zO,,. Hence we also
have (2.14), where p is q for p = 2.

Assume that d is even. Then D,, is even, m # 1 mod 4 and 20,,, = ¢ is ramified
in F. Similarly, we have (2.14), where p = p° = q for p = 2.

(1) By (2.14), we have [d] = [¢]?. Clearly, [0] € A% if and only if [¢]+[(a,wm)] €
A2, for some a € P,,. This is equivalent to aN¢ = ay € NF,, by Proposi-
tion 2.2. Note that

e [ay,m], =1 for any odd prime p | v;
e [a7,m]e = 1 because ay > 0;
e if 24 D,, and v is odd, then a is odd and m = 1 mod 4; if 2t D,,, and
v is even, then m = 1 mod 8.
In other words, [ay,m], = 1 for all v{ D,,. Thus ay € NF,, if and only if
la, m]p, = [y, m]p, for all p; | Dy, if and only if

Rm (Upl (a)v e ,vpt (a’))T = (h/vm]pla sty ['% m}pt)T'
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(2) Denote by 7o the odd part of v. If m # 1 mod 4, then D,, is even and
t
Z[’ya m]Pi = Zh/a m]p =0.
i=1 plo
Here, [y,m]oc = 0 because v > 0. If m = 1 mod 4 and v is odd, then
[v,m]2 = 0; if m =1 mod 4 and 7 is even, then m = 1 mod 8 and [y, m]s =
0, as shown in the proof of (1). Therefore
¢
Z['va]pi = Z['YOvm]p +[v,m]2 = 0. O
i=1 plvo
2.4. The tame kernel. Denote by K>0O,, the tame kernel of F,,. We list the
results about 2-rank and 4-rank of K20, that we will use. Assume that |m| > 2.

Theorem 2.5 (] ). The subgroup K20,,[2] is generated by the Steinberg sym-
bols

o {—1,d},d|m;

o {—1,u+/m}, where m = u? — cw? for some ¢ = —1,42 and u,w € N.
Denote by k the number of odd prime factors of m. Then

k+logy #({£1,£2} NNF,); ifm > 2;

72z On) = {k —1+log #({1,2} NNE,); if m < 2.

Theorem 2.6 (| , Theorem 3.4]). Suppose that m > 2. Denote by Vi the set
of positive d | n satisfying: there exists € € {£1,£2} such that (d,—m), = (%),Vp \
n. If2 € NF,,, then write m = 2u? — X2, u, A € N and denote by Vo the set of
positive d | n satisfying: there exists € € {£1} such that (d,—m), = (%),Vp | n.
We have

9ra(K20m)+1 _ HV) + #Vs.

Theorem 2.7 ([ , Theorem 4.1]). Suppose that m < —2. Denote by Vi the
set of d | n satisfying: there exists € € {1,2} such that (d,—m), = (%),Vp | n. If
2 € NF,,, then write m = 2u?> — A2, u, A\ € N and denote by Vs the set of d | n
satisfying: (d, —m), = (%),Vp | n. We have

9ra(K20m)+2 _ HV1 + #Vs.

Here, Vo = () if 2 ¢ NF,,.

Let’s translate these results into the language of matrices. Denote by n the odd
part of |m| and denote by B,,, = A, + Dy, ;5,/n, Where A, is defined as (2.2). If
m > 2, then

(215)  #{x:Bpx=b,i1,by 1o} +#{x:B,x =b, 4, } = 2"4K20m)H1,
If m < —2, then
(2.16)

ora(K20m)+2 it p ¢ ImB,,;
X:Bmxzoabn + X BmX:bn - ’ T ms
#{ 72} #{ ,#} {27‘4(1{207”)-{-1’ lf bn,—]_ c ImBm

Theorem 2.8. Assume that n = py---pg 18 an odd positive square-free integer,
where all prime factors p; are congruent to =1 modulo 8 and n = 1 mod 8. Write
n = A2 —2u% where \, u € N.
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(1) We have ha(n) +1 = hy(2 )—h4( n) = hy(—2n) = corank A,,.
(2) If hay(—n) = 1, then hg(—n) =1 — [)‘ 28] If moreover all p; = 1 mod 8,

then hg(—n) =1 — [‘fnﬂ}.

(3) If ha(—2n) = 1, then hs(—2n) = 1 — [4]. If moreover all p; = 1 mod 8,

then hg(—2n) =1 — [L]

(4) Assume that all p; = 1 mod 8. We have r4(K20_2,) = 0 if and only if

h4( ) =1 ]’Lg( )-i-hg( 277,) =1. If h4( ) =1, then 7“4(KQO_2n) <1.

(5) Assume that all p; = 1 mod 8. We have r4(K2(9n) = 0 if and only if

ha(—n) =1,hg(—n) = 0. If hy(—n) =1, then r4(K20,) < 1.

Here, 1 < d | n such that AT+, (d) = 0.

Proof.
(2.17)

()

(1) By the quadratic reciprocity law, we have
AE =A,+ Dn -1+ bn —1bT 1-
By b b, 1=b, ;1= [=1] =0, one can show that

AT(I+1bn _1) A +Dn,—1a
where I+ 1b] _; is invertible since (I+1b; _;)? = I. Thus
rank R,, = rank R’ = rank R/,, = rank A,,,

which concludes the result by (2.11) and (2.13).
Since 0_,(n) = [(v/—n)] is the trivial class, we have

An2 A2, = {{1)].0-n(2)},
where 6_,(2) = 0_,,(2n). Note that (A+2px,2, A+ 1) is a primitive positive
solution of 202 + %82 = 442, Since InR’,, = {x : () x = 0}, by
Proposition 2.4, we have hg(—n) = 1 if and only if b, x4, € ImR’, if
and only if 0 = ¥(d) b ap, = [2T2].
If all p; = 1 mod 8, then d = n since AT1 = 0. Let u’ be the odd part

of u. Then
2] 2~ 252 o

Since A = +v/2u mod p;, we have [M] [\fﬂ]

Note that (24,2, ) is a primitive positive solution of 2a% +n3? = 442. The
result follows from arguments similar to (2).

In this case, B_g, = A, and B_5,1 = b, _;. Note that

m = —2n=2(\+2u)* — (2\ + 2p)%

By (2.16), r4(K20_9,) = 0 if and only if corank A,, = 1 and b, x19, ¢
Im A, if and only if hy(—n) =1 and
| = 1Tby ry2p = {/\+2u} _ {\/§+2} _ [\/§+ 1] N [\/5}
n n n
i.e., hg(—n) + hg(—2n) = 1.

If hy(—n) = 1, then corank A,, = 1. Thus A,x = 0 has two so-
lutions, A,x = by, x4, has at most two solutions. Thus implies that
7‘4(K20_2n) S 1 by (21())

The proof is similar to (4). O

no
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Proposition 2.9. Letn =p;---pr = 1 mod 8 be a square-free positive integer with
odd prime factors p; such that p; = £1 mod 8 for alli. If ha(—n) =1, then

hg(—n) + hg(—2n) = % mod 2,
where d is the unique divisor of n such that (d,n), = 1,Yv and d # 1,d = 1 mod 4.
Proof. Notice that d = (ﬁﬂd\ and
0= [d,nlp; = [d, =1, + [d, —nlp,

i

= [0, =1y, + [l =l + [ 7|1 =
= [dv _1}171‘ + Hd|v _n]pi + [ﬁ} [;Tll}»
we have
0= D1l + Auton(ld) + [ 7B

= (An + Dn,fl)wn(‘dD + bn,flbg,71¢n(|d|) = Agwn(‘dl)

by (2.17). Write n = A2 — 2u? where A,u € N. By Theorem 2.8 (2) and (3),
hg(—n) + hg(—2n) = 1 if and only if

)
(= [ [y (2

which is equivalent to d =9 mod 16 by | , Lemma 5.4]. O

3. THE SELMER GROUPS AND THE CASSLES PAIRINGS

Let n = PQ be a square-free positive integer with an ordered prime decomposi-
tion
n =ged(2,n)p1 - pra1 - G,
where P = py -+ pg, Q@ = ged(2,n)q1 - - - go. Assume that p; = -+ = pp = 1 mod 8
and there exists

u=(up,...,u)" €Tk v=(v1,...,0)" €F§
such that the Legendre symbol [Z—] = u,;v;. Clearly,

k 14

1Tu = ZUZ and 1Tv = Zvj.
i=1 j=1

Lemma 3.1. Assume that 1Tu=0,1"v=1,p; =--- =p, = 1 mod 8 and Q is
non-congruent with III(Eg)[2*°] = 0. Then

KerM,, = x,z € Ker(Ap + Up)

O N O X

In particular, so(n) = 2corank(Ap + Up).
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Proof. Note that A,,1 =0 and AL = Ap. By our assumptions,

_ (Ap+Up uv? v _ (Ap+Up uv’
An = ( VuT AQ and An = VUT A'CE .

Note that Dp 19 = Oy. If @ is odd, we have

AP —+ Up uvT Ok-,
M. — vul Ag+Dgo Dg
" O Ap+Up uv’T
DQ’Q vuT AQ + DQ’,Q

If Q is even, we have

Ap+Up uv’ Oy
M. — vul Ag +Dg2 Dg 1
" Oy Ap+Up uv’®
DQ,Q vul AQ + DQ)Q
If
X
Y1 € Ker M,
Z
w
then
(Ap+Up)x = uvly, (Ap+Up)z = uvlw
and

T
y\ _ [(vu'x
Ma (3) = (Vi)
Since Ap = A};, we have 1TAp = 07 and

(3.1) 0=1Tuvly =1T(Ap + Up)x =1"Upx = u'x.

Mo, (gv) o,

Since s2(Q) = 0, Mg is invertible and we have y = w = 0. Thus x,z € Ker(Ap +
Up),

Similarly, uTz = 0. Thus

KerM,, = x,z € Ker(Ap + Up)

O N O X

and s3(n) = 2corank(Ap + Up). O

Proposition 3.2. Let f;, f; be two positive divisors of P such that ged(f;, f;) =1
and Yp(fi),vp(f;) € Ker(Ap + Up). Denote by

At:(fta]-7ft) and A;S:(ftaftvl)
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fort=1i,7. Then

o) =[S+ (7= [7)
o) - (2] - 4],
= [2], a = [BE],

where (o, B;,7:) (resp. (o, Bl,7L)) is a primitive positive solution of

n n
fiod + *ﬂ? = 47 (7’65]0- fioa? — ?51(2 = 4%{2>-
(2 K3
12

Proof. Let (o, B!,~!) be a primitive positive solution of f;a/? — %51’-’2 = 412,

R %
It’s easy to see that ay, B, vi, &b, Bl i, o, BY i are coprime to n/ged(2,n).

(1) Recall that Dy, is defined by
Hy: —nt? +ud — fiud =0,
Hs : —%tz—i—u%—u%:O,
Hs: 2nt? + fiu? —u3 = 0.

Choose
Q1 = (B, fa,27)) € H1(Q), Ly = %Bz’-t — s + 2vjus,
Q2= (0,1,-1) € H2(Q), Ly = uz + uy,
Qs = (8/,2v/, fia)) € H3(Q), L = 2%51% + 2] w1 — o ua.

By (3.1), we have uT+p(f;) = 0, which implies that

(32) ﬁ:| = Z UrVs = vsuTwP(ft) =0.
Qs pr‘ft
If v = ps | P, then [Z—t] = [Z’—f] = uzv; and pg = 1 mod 8. Thus we have
{Q} = uSVTl = Ug.
Ds

One can see that the s-th entry of the vector (Ap + Up)p(f;) is

0= et Yl —Ply, = [ 2] + 11 =Py, = [2] + [FLL] = [24]

ol Ds Ds Ds Ds
if p, | fi;
f;
(3:3) 0= Z[pv —Plp, = [fi,—Plp, = {pi}
plfi s
if ps | %.

(i) The case v = ps | f;. Take
Py = (tur,uz,u3) = (1,v/=20/ fi,0,5/=n/ fi).
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Note that
(Biv/—n/ fi + 27]) (=Bi/—n/ fi + 20}) = fiaf?

and one of £8}+/—n/ f; + 27, is congruent to 4~} modulo v. Since [f;, fi], =0
for t = 4,7 by (3.3), we have

[iﬁ; V _n/fi + 2’7/;’ ft]v = [4’)/@/’7 ft]v'
Then
[ ( ft] [4%\/ n/fzaft] [%"\/ —n/ fi, ft]v-
Similarly,
[L2(Pv),ft}v = [(\/iJF 1)y *”/fiaft]vy
[Ls(Py), fi], = [4\@%{/\/ —n/fi, fr], = [\/5%{/\/ —n/fi, fi],-
Thus
[L1L2(P ) } [(\/>+1 ’Yz’ft]
[LALs(Py), fi], = [V2vivi's f1],-
(ii) The case v = py | fﬁ Take
P, = (t,u1,uz,u3) = (0,1,+/fi, 1).
Similarly to (i), we have

[Ll(Pv)vft]v = [4’Yz{aft]’u = [’Yz{vft]vﬁ
[La(Py), fi], = [2, filo = O,
[LS(PD)aft] [4’71 7ft]v - [71 7ft]

and then

[LaLa(Po), fi], = iy files
[LaLs(Po), fi], = [ind's filo-
By Lemma 2.1 and (3.2), we have

101
(0o = VBRI S, + b = [V

vl fi ’U‘f i
(Ao, Ag) =D [V2urds £], + D_vid's file Pfj J
(3.4) Y v V2+ 1)y,
| fi U|f£ i

<AZ»A;> Z[(f+ 'waj +Z%afg [JTJ}’

vl fi v|f
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(2) Recall that Dy, is defined by

Hy: —nt? +ul — fiu? =0,

Hy: —nt?+ fiud —u? =0,
H3: 2242442 —ud=0.

fi
Choose
n
Q1 = (Bi, 2vi, ficw) € H1(Q), L= Fﬂit — 2y,uz + aus,
! ! ! n / / !
Q2 = (B}, fia;, 2v;) € H2(Q), Ly = ?5175 — Qjug + 2y;u,
Q3 = (O’ 1, _1) € H3(Q)a L3 = uyp + us.

(i) The case v | f;. Take

PU = (t,ul,uQ,u;),) = (1, \/T/fi, \/n/fi,O).

Similarly, we have

(L (Py), fi],, = [4%-@, fi], = [viv/n/ fi, fi]
[L2(Pv)aft]v = [4v}v _n/fiaft]y = [viv —n/fi,ft]W
[Ls(P,), ft]v =[(vV-1+ 1)v/n/ fi, ft]v,
and then
[LlLQ(Pv),ft]v = [ﬁ%%ﬁ]v = [’Yi’)’gvft]va
[LiLs(Py), fi], = (V=14 Dy, fi] , = [(V2+ Dy, fo] -

Here, we use the fact that
W=T=(V2+ V=2
(V2+D)(V-1+1) = %(\/ﬁ+\/f1+1)2

are squares in Q,.
(ii) The case v | %. Take

P’U = (ta Ul,Ug,Ug) = (07 17 17 \/ﬁ)

Similarly, we have
[Ll(Pv)»ftL, = [~4vs, ftlo = i, felo,
[L2(Pv)aft}v = [47;aft]v = [%{aft]v,
[LS(Pv)aft}v = [27ft]v =0,

and then

[LILZ(PU)7ft]U = [7i7£7ft]'u7
[LILB(PU)7ft]U = [’Yivft]v-

15
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By Lemma 2.1 and (3.2), we have

(AL AD) = v filo + b, fid = [ 2],

olf; ol £ fi
(N A5) = ik file + 2wl Sl = [222],
(W85} = O[OV + D 5], + Sl £ = [P,
ol fi ol £ !
(N A = (VR 10 1), + Sl fide = [ ],
vl fi 1,|% J
Finally, we conclude the results by (3.4) and (3.5). O

4. PROOF OF MAIN THEOREMS

Lemma 4.1. The following are equivalent:
e n is non-congruent with I1(E,)[2°°] & (Z/27)%™;
e the Cassels pairing on Sely(E,) is non-degenerate.

Proof. The proof is due to [ , Pp 2146, 2157]. Since
0= E,[2] = E,[4] 23 E,[2] » 0

is exact, we have the long exact sequence

E.(Q)[2]
2E,(Q)[4]

where Im Sely(E,,) is the image of Sely(FE,) 2 Selo(E,). It’s known that the
kernel of the Cassels pairing on Sely(F,,) is Im Sely(F,,). Thus

rankz, E,(Q) =0, II(E,)[2] = (2/2Z)%™

if and only if #Selo(E,) = #Sely(Ey,), if and only if ImSely(F,) = E,[2] in
Sely(E,,), if and only if the Cassels pairing on Sely(F,,) is non-degenerate. O

0— — Sely(Eyp) — Sely(Ey) — Im Sely(Ey,) — 0,

Proof of Theorem 1.4. Tt follows from Lemma 3.1 that sy(n) = 0 if and only if
A p + Up is invertible. This concludes the result. [l

Proof of Theorem 1.5. By Lemma 3.1, so(n) = 2 if and only if corank(Ap+Up) =
1. Assume that corank(Ap 4+ Up) = 1 from now on. By our assumptions, ¢ p(d)
is a non-zero vector lying in Ker(Ap + Up). Then

0 0 Yp(d) Yp(d)
0 0 0 0

KerM,, = ol |vr@ | 0 | p(d)
0 0 0 0

Thus
Sely(E,) = {(1,1,1),(d, 1,d),(1,d,d), (d,d,1)}
by (2.5) and (2.7).
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Denote by A = (d,1,d) and A’ = (d,d,1). Then

St

(A = [ d d

by Proposition 3.2. Hence the Cassels pairing on Sel,(E,,) is non-degenerate if and

only if (%) (%) = —1. Conclude the results by Lemma 4.1. (]

Proof of Corollary 1.6. Take u = 0 and v = (1,0,...,0)T in Theorem 1.5, we
obtain that Up = O. Thus corank(Ap + Up) = 1 if and only if corank Ap = 1, if
and only if hy(—P) =1 by (2.11).

Since Apl = 0, the non-zero vector in Ker Ap is ¥p(d) = 1. Thus d = P and
we conclude the result by Theorem 2.8 (2) and (5). O

Example 4.2. We give two examples to show that our results produce new non-
congruent numbers.

1 1
(1) Clearly, M3 = (1 0

II(E3)[2%°] = 0. If p = 193, then (%) =1, A, =0 and hs(—p) = 1. Since
522 = 2 mod p, we have

). Thus ¢ = 3 is a non-congruent number with

V241 53

e =1- P2 -1 ] -
s(—p) D 193

Since 193 x 1243 x12 = 4x 72 and (%) = 1, we obtain that n = pg = 3x 193

is non-congruent with II(E,,)[2*°] = (Z/27)? by Corollary 1.6.

(2) Clearly, M10 = 1 (]).

with III(E1p)[2°] = 0. If p = 241 = 23% — 2 x 122, then (2) =1, A, =0

. Thus @ = 2¢ = 10 is a non-congruent number

and hy(—p) = 1. Since 222 = 2 mod p, we have

i =1 (2] =1 (2] <o

Since 241 x 22 +10 x 242 = 4 x 412 and (%) = 1, we obtain that n = 2pq =
10 x 241 is non-congruent with II1(E,,)[2°°] = (Z/2Z)? by Corollary 1.6.
Proof of Corollary 1.7. (1) Note that (o, 8,7) = (4,2n —2,n+ 1) is a positive
primitive solution of na? + % = 442, Thus [2] = [=H] = 0. This
concludes the result by Corollary 1.6 and Theorem 2.8 (5).
(2) Write n = A2 — 2u% where A, u € N. Then (2,24, ) is a primitive positive
solution of na?+28% = 442, By Theorem 2.8 (3), [2] = 1—hg(—2n). This

n

conclude the result by Theorem 2.8 (4) and Corollary 1.6. ]

Proof of Theorem 1.8. By our assumptions (we rearrange the order of prime factors
of P),

AP +Up = AP = diag{Af1,~~AfT}.
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Since ha(—f;) = 1, we have corank Ay, = 1 by Theorem 2.8 (1). Since Ay,1 =0,
we have sa(n) = 2r and the kernel of M, is consists of vectors

C1

where c;,d; = 0 or 1 are vectors in Ker Ay,. Thus Sely(E,) is generated by
Ay, oo AN AL where

Al:(f7717f1)) A;:(fhflal
v
fi

by (2.5) and (2.7). By Proposition 3.2, we have [ ] = [}—J} and the Cassles pairing
f i
with respect to this basis is

X — * BT+ C
“\B+C B+BT)’

where

: (V2 V2
B=([Z]),., ma o=am{[SE] o [S5E])

Since hy(—f;) = 1, we have

C =diag{1 — hs(—f1), -, 1 — hs(—fr)}
by Theorem 2.8 (2). By our assumptions,

B = diag{hs(~f1). -+ hs(~1,)}.

Therefore, X = is invertible, i.e., the Cassles pairing on Sely(F,,) is non-

S |
I O
degenerate. Conclude the results by Lemma 4.1. (I

Proof of Corollary 1.9. (1) Since
R_n = diag{An, O} = diag{Afl R Af,r, 0},

we have hy(—n) = r and A_,,[2]NA2,, is generated by 0_,,(f1),..,0_n(fr—1)
and 0_,(2) by (2.10) and (2.11). Here, one notice that

e—n(fl) T e—n(fr) = e—n(n) = [(V _n)]

is the trivial class. If hg(—n) = r, or hg(—n) = r — 1 and [(2,/—n)] ¢
A%, then all §_,(f;) € A_,[2] N A*,. By Proposition 2.4, this implies
that b, ~, € ImA,,, where (o, 3;,v:) is a primitive positive solution of
fia? — fﬂﬁf = 442. Thus by, . € Im Ay, for all j. Since lTAf]. =0T, we
have "

0=1"by,, = 3]

firy fj

Conclude the results by Theorem 1.8.
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(2) Similar to (1), ha(—2n) = r and A_,[2] N A%,,, is generated by 0_2,(f1),
ooy O_2,(fr) by (2.10) and (2.11). Here, one notice that

0-271(2) = Q—Qn(fl) T H—Zn(fr)

since 0_s,(2n) = [(v/—2n)] is the trivial class. If hg(—2n) = r, then all
0_2n(f:) € A_2,[2]NA%,,,. One can conclude the results similar to (1). O

This paper reveals a new phenomenon: for a general non-congruent number
n with the second minimal 2-primary Shafarevich group, the criterion cannot be
expressed solely in terms of the 4-ranks and 8-ranks of class groups of quadratic
fields, even though this is possible when the prime factors of n lie in certain residue
classes. A key remaining problem is how to find simple arithmetic conditions that
characterize non-congruent numbers with specific 2-primary Shafarevich groups.

Acknowledgements. The author is partially supported by the National Nat-
ural Science Foundation of China (Grant No. 12271335) and the Fundamental
Research Funds for the Central Universities (No. JZ2023HGTB0217).

REFERENCES

[BS82] J. Browkin and A. Schinzel. On Sylow 2-subgroups of K2OF for quadratic number fields
F. J. Reine Angew. Math., 331:104-113, 1982.

[Cas98] J. W. S. Cassels. Second descents for elliptic curves. J. Reine Angew. Math., 494:101-127,
1998. Dedicated to Martin Kneser on the occasion of his 70th birthday.

[Fen97] Keqin Feng. Non-congruent number, odd graph and the BSD conjecture on y? = 23 —
n?z. In Singularities and complex geometry (Beijing, 1994), volume 5 of AMS/IP Stud.
Adv. Math., pages 54—66. Amer. Math. Soc., Providence, RI, 1997.

[HB94] D. R. Heath-Brown. The size of Selmer groups for the congruent number problem. II.
Invent. Math., 118(2):331-370, 1994. With an appendix by P. Monsky.

[Hec81] Erich Hecke. Lectures on the theory of algebraic numbers, volume 77 of Graduate Texts
in Mathematics. Springer-Verlag, New York-Berlin, 1981. Translated from the German
by George U. Brauer, Jay R. Goldman and R. Kotzen.

[Isk96]  Boris Iskra. Non-congruent numbers with arbitrarily many prime factors congruent to 3
modulo 8. Proc. Japan Acad. Ser. A Math. Sci., 72(7):168-169, 1996.

[JY11] Hwanyup Jung and Qin Yue. 8-ranks of class groups of imaginary quadratic number
fields and their densities. J. Korean Math. Soc., 48(6):1249-1268, 2011.

[LQ23] Guilin Li and Hourong Qin. Diophantine equations, class groups and non-congruent
numbers. Ramanujan J., 62(4):1081-1105, 2023.

[LT00] Delang Li and Ye Tian. On the Birch-Swinnerton-Dyer conjecture of elliptic curves
Ep:y? =23 — D2x. Acta Math. Sin. (Engl. Ser.), 16(2):229-236, 2000.

[Lul5]  Qing Lu. 8-rank of the class group and isotropy index. Sci. China Math., 58(7):1433—
1444, 2015.

[LY20] Jianing Li and Chia-Fu Yu. The Chevalley-Gras formula over global fields. J. Théor.
Nombres Bordeauz, 32(2):525-543, 2020.

[0Z14] Yi Ouyang and Shen Xing Zhang. On non-congruent numbers with 1 modulo 4 prime
factors. Sci. China Math., 57(3):649-658, 2014.

[0Z15] Yi Ouyang and Shenxing Zhang. On second 2-descent and non-congruent numbers. Acta
Arith., 170(4):343-360, 2015.

[Qin95a] Hou Rong Qin. The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields.
Acta Arith., 69(2):153-169, 1995.

[Qin95b] Hou Rong Qin. The 4-rank of K2OF for real quadratic fields F. Acta Arith., 72(4):323—
333, 1995.

[Qin22] Hourong Qin. Congruent numbers, quadratic forms and K2. Math. Ann., 383:1647-1686,
2022.

[Re34] L. Redei. Arithmetischer Beweis des Satzes tiber die Anzahl der durch vier teilbaren
Invarianten der absoluten Klassengruppe im quadratischen Zahlkorper. J. Reine Angew.
Math., 171:55-60, 1934.



20 SHENXING ZHANG

[Smil6] Alexander Smith. The congruent numbers have positive natural density. arXiv: Number
Theory, page 32, 2016.

[TYZ17] Ye Tian, Xinyi Yuan, and Shou-Wu Zhang. Genus periods, genus points and congruent
number problem. Asian J. Math., 21(4):721-773, 2017.

[Wan16] Zhang Jie Wang. Congruent elliptic curves with non-trivial Shafarevich-Tate groups.
Sci. China Math., 59(11):2145-2166, 2016.

[WZ22] Zhangjie Wang and Shenxing Zhang. On the quadratic twist of elliptic curves with full
2-torsion. preprint, 2022.

[Zha23] Shenxing Zhang. On a comparison of Cassels pairings of different elliptic curves. Acta
Arith., 211(1):1-23, 2023.

SCHOOL OF MATHEMATICS, HEFEI UNIVERSITY OF TECHNOLOGY, HEFEI, ANHUI 230000, CHINA
Email address: zhangshenxing@hfut.edu.cn



	1. Introduction
	1.1. Background
	1.2. Main results
	1.3. Notations

	2. Preliminaries
	2.1. The Monsky matrix
	2.2. The Cassels pairing
	2.3. The narrow class group
	2.4. The tame kernel

	3. The Selmer groups and the Cassles pairings
	4. Proof of main theorems
	References

