
ON NON-CONGRUENT NUMBERS AS MULTIPLES OF
NON-CONGRUENT NUMBERS

SHENXING ZHANG

Abstract. Let n = PQ be a square-free positive integer, where P is a product
of primes congruent to 1 mod 8, and Q is a non-congruent number with a trivial
2-primary Shafarevich-Tate group. Under certain conditions on the Legendre
symbols

( q
p

)
for primes p | P, q | Q, we establish a criteria characterizing when

n is non-congruent with a minimal or a second minimal 2-primary Shafarevich-
Tate group. We also provide a sufficient condition for n to be non-congruent
with a larger 2-primary Shafarevich-Tate group. These results involve the class
groups and tame kernels of quadratic fields.

1. Introduction

1.1. Background. A square-free positive integer n is called congruent if it is the
area of a right triangle with rational lengths. This is equivalent to say, the Mordell-
Weil rank of En over Q is positive, where

En : y2 = x3 − n2x

is the associated congruent elliptic curve. Denote by Sel2(En) the 2-Selmer group
of En over Q and

s2(n) := dimF2

(
Sel2(En)

En(Q)[2]

)
= dimF2

Sel2(En)− 2

the pure 2-Selmer rank. Then

s2(n) = rankZEn(Q) + dimF2
X(En)[2]

by the exact sequence

0 → En(Q)/2En(Q) → Sel2(En) → X(En)[2] → 0,

where X(En) is the Shafarevich-Tate group of En/Q.
Certainly, s2(n) = 0 implies that n is non-congruent with X(En)[2

∞] = 0.
The examples of s2(n) = 0 can be found in [Fen97], [Isk96] and [OZ15], which
are corollaries of Monsky’s formula (2.8) for s2(n). This case is fully characterized
in terms of the 2-primary class groups of imaginary quadratic fields, and the full
Birch-Swinnerton-Dyer conjecture holds, see [TYZ17, Theorem 1.1, Corollary 1.3]
and [Smi16, Theorem 1.2].

Date: August 28, 2025.
2020 Mathematics Subject Classification. Primary 14H52; Secondary 11G05, 11R11, 11R29,

11R70.
Key words and phrases. non-congruent number; descent method; elliptic curve; class group;

tame kernel; Tate-Shafarevich group.
1



2 SHENXING ZHANG

The examples of non-congruent n with X(En)[2
∞] ∼= (Z/2Z)2 can be found in

[LT00], [OZ14], [OZ15] and [Zha23]. Denote by

(1.1) r2a(A) = dimF2

(2a−1A

2aA

)
the 2a-rank of a finite abelian group A. Denote by h2a(m) the 2a-rank of the narrow
class group Am of the quadratic field Q(

√
m). Denote by (a, b)v the Hilbert symbol.

Theorem 1.1 ([Wan16, Theorem 1.1]). Let n = p1 · · · pk ≡ 1 mod 8 be a square-
free positive integer with prime factors pi such that pi ≡ 1 mod 4 for all i. The
following are equivalent:

• n is non-congruent with X(En)[2
∞] ∼= (Z/2Z)2;

• h4(−n) = 1 and h8(−n) ≡ (d− 1)/4 mod 2,
where d is a positive divisor of n such that either (d,−n)v = 1, ∀v, d 6= 1, n, or
(2d,−n)v = 1, ∀v.

Theorem 1.2 ([WZ22, Theorem 1.1]). Let n = p1 · · · pk ≡ 1 mod 8 be a square-
free positive integer with prime factors pi such that pi ≡ ±1 mod 8 for all i. The
following are equivalent:

• n is non-congruent with X(En)[2
∞] ∼= (Z/2Z)2;

• h4(−n) = 1, h8(−n) = 0.

Theorem 1.3 ([Zha23, Theorem 5.3]). Let n = p1 · · · pk ≡ 1 mod 8 be a square-
free positive integer with prime factors pi such that pi ≡ ±1 mod 8 for all i. The
following are equivalent:

• 2n is non-congruent with X(E2n)[2
∞] ∼= (Z/2Z)2;

• h4(−n) = 1 and d ≡ 9 mod 16,
where d is the unique divisor of n such that (d, n)v = 1, ∀v and d 6= 1, d ≡ 1 mod 4.

The condition that d ≡ 9 mod 16 is equivalent to h8(−n) + h8(−2n) = 1, see
Proposition 2.9. This recovers [LQ23, Theorem 1.6].

Qin in [Qin22, Theorem 1.5] proved that if p ≡ 1 mod 8 is a prime with trivial
8-rank of the tame kernel K2OQ(

√
p), then p is non-congruent. Moreover, if the

4-rank of K2OQ(
√
p) is 1, then X(Ep/Q)[2∞] ∼= (Z/4Z)2.

1.2. Main results. In this paper, we want to construct non-congruent numbers n
with the form n = PQ, where

• P is a product of different primes ≡ 1 mod 8,
• Q is a non-congruent number prime to P , such that X(EQ)[2

∞] = 0.
Denote the prime decomposition of n by

n = gcd(2, Q)p1 · · · pkq1 · · · qℓ,

where P = p1 · · · pk, Q = gcd(2, Q)q1 · · · qℓ. Assume that there exists two vectors

u = (u1, . . . , uk)
T ∈ Fk

2 and v = (v1, . . . , vℓ)
T ∈ Fℓ

2

such that the Legendre symbol
(
pi

qj

)
= (−1)uivj . Denote by

UP = diag{u1, . . . , uk} and AP = (aij)k×k

matrices defined over F2, such that the Hilbert symbol (pj ,−P )pi
= (−1)aij .
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1.2.1. s2(n) = 0.

Theorem 1.4. Assume that
∑k

i=1 ui = 0,
∑ℓ

j=1 vj = 1, p1 ≡ · · · ≡ pk ≡ 1 mod 8

and Q is non-congruent with X(EQ)[2
∞] = 0. The following are equivalent:

• n is non-congruent with X(En)[2
∞] = 0;

• AP +UP is invertible.

1.2.2. s2(n) = 2.

Theorem 1.5. Assume that
∑k

i=1 ui = 0,
∑ℓ

j=1 vj = 1, p1 ≡ · · · ≡ pk ≡ 1 mod 8

and Q is non-congruent with X(EQ)[2
∞] = 0. The following are equivalent:

• n is non-congruent with X(En)[2
∞] ∼= (Z/2Z)2;

• corank(AP +UP ) = 1 and
(
γ
d

)
= −

(√
2+1
d

)
,

where d 6= 1 is a positive divisor of P such that (d,−P )pi
= (−1)ui , ∀pi | d;

(d,−P )pi = 1, ∀pi | P
d , and (α, β, γ) is a primitive positive solution of dα2 + n

dβ
2 =

4γ2.

Here, a primitive positive solution of dα2+ n
dβ

2 = 4γ2 is an integer solution such
that α, β, γ > 0 and gcd(α, β, γ) = 1.

When u = 0, we obtain the following result:

Corollary 1.6. Assume that
(
pi

qj

)
= 1, ∀i, j, p1 ≡ · · · ≡ pk ≡ 1 mod 8 and Q is

non-congruent with X(EQ)[2
∞] = 0. The following are equivalent:

• n is non-congruent with X(En)[2
∞] ∼= (Z/2Z)2;

• h4(−P ) = 1 and
(
γ
P

)
= (−1)h8(−P );

• h4(−P ) = 1 and
(
γ
P

)
= (−1)r4(K2OQ(

√
P )),

where (α, β, γ) is a primitive positive solution of Pα2 +Qβ2 = 4γ2.

When ℓ = 0, we obtain the following results, which are special cases of Theo-
rems 1.1,1.2 and 1.3.

Corollary 1.7. Let n = p1 · · · pk be a square-free integer where p1 ≡ · · · ≡ pk ≡
1 mod 8.

(1) The following are equivalent:
• n is non-congruent with X(En)[2

∞] ∼= (Z/2Z)2;
• h4(−n) = 1 and h8(−n) = 0;
• r4(K2OQ(

√
n)) = 0.

(2) The following are equivalent:
• 2n is non-congruent with X(E2n)[2

∞] ∼= (Z/2Z)2;
• h4(−n) = 1 and h8(−n) + h8(−2n) = 1;
• r4(K2OQ(

√
−2n)) = 0.

1.2.3. General case.

Theorem 1.8. Assume that
(
pi

qj

)
= 1, ∀i, j, p1 ≡ · · · ≡ pk ≡ 1 mod 8 and Q is

non-congruent with X(EQ)[2
∞] = 0. If there is a decomposition P = f1 · · · fr such

that
• h4(−fi) = 1, ∀i;
•
(

p
p′

)
= 1 for any i 6= j and prime factors p | fi, p′ | fj;

•
(
γi

fj

)
= 1 if i 6= j;

(
γi

fi

)
= (−1)h8(−fi),
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then n is non-congruent with X(En)[2
∞] ∼= (Z/2Z)2r, where (αi, βi, γi) is a prim-

itive positive solution of fiα2
i +

n
fi
β2
i = 4γ2i .

When ℓ = 0, we obtain the following results, where (1) is just [Wan16, Theo-
rem 1.2].

Corollary 1.9. Let n = p1 · · · pk be a square-free integer where p1 ≡ · · · ≡ pk ≡
1 mod 8.

(1) If there is a decomposition n = f1 · · · fr such that
• h4(−fi) = 1, h8(−fi) = 0, ∀i;
• h8(−n) = r, or h8(−n) = r − 1 and [(2,

√
−n)] /∈ A4

−n;
•

(
p
p′

)
= 1 for any i 6= j and prime factors p | fi, p′ | fj,

then n is non-congruent with X(En)[2
∞] ∼= (Z/2Z)2r.

(2) If there is a decomposition n = f1 · · · fr such that
• h4(−fi) = 1, h8(−fi) = 0, ∀i;
• h8(−2n) = r;
•

(
p
p′

)
= 1 for any i 6= j and prime factors p | fi, p′ | fj,

then 2n is non-congruent with X(E2n)[2
∞] ∼= (Z/2Z)2r.

Let’s sketch the proof of these results. Since the congruent elliptic curve En has
full rational 2-torsion, the pure 2-Selmer group Sel′2(En) := Sel2(En)/En(Q)[2] can
be identified with a set of triples (d1, d2, d3) ∈ (Q×/Q×2)3, where d1, d2, d3 may be
taken as square-free integers. The local conditions for Selmer elements translate
into certain quadratic residue conditions, which in turn correspond to the 4-ranks
of class groups of associated quadratic fields. As established in [Wan16], En(Q) is
finite with X(En)[2

∞] ∼= (Z/2Z)s2(n) if and only if the Cassels pairing on Sel′2(En)
is non-degenerate. This condition can be expressed in terms of the 8-ranks of class
groups and the 4-ranks of tame kernels of associated quadratic fields.

1.3. Notations. Denote by
• gcd(m,n) the greatest common divisor of integers m,n, where m 6= 0 or
n 6= 0;

• (a, b)v the Hilbert symbol;
• [a, b]v the additive Hilbert symbol, i.e., the image of (a, b)v under the iso-

morphism {±1} ∼−→ F2;
•
(
a
b

)
=

∏
p|b(a, b)p the Jacobi symbol, where gcd(a, b) = 1 and b > 0;

•
[
a
b

]
the additive Jacobi symbol, i.e., the image of

(
a
b

)
under the isomor-

phism {±1} ∼−→ F2;
• vp the normalized valuation on Qp;
• 0 = (0, . . . , 0)T and 1 = (1, . . . , 1)T;
• r2a(A) the 2a-rank of a finite abelian group A, see (1.1);

If n is a square-free positive integer, then we denote by
• En : y2 = x3 − n2x the congruent elliptic curve associated to n;
• Sel2(En) the 2-Selmer group of En/Q;
• X(En) the Shafarevich-Tate group of En/Q;
• Sel′2(En) := Sel2(En)/En(Q)[2] the pure 2-Selmer group of En/Q;
• s2(n) = dimF2 Sel

′
2(En) the pure 2-Selmer rank of En.

If n is odd with a fixed ordered prime decomposition n = p1 · · · pk, then we denote
by
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• An =
(
[pj ,−n]pi

)
k×k

a matrix associated to n, see (2.2);
• Dn,ε = diag

{[
ε
p1

]
, . . . ,

[
ε
pk

]}
a matrix associated to n and ε, see (2.3);

• bn,ε = Dn,ε1 =
([

ε
p1

]
, . . . ,

[
ε
pk

])T;
• Mn (resp. M2n) the Monsky matrix of En (resp. E2n), see (2.4) and (2.6);
• ψn(d) =

(
vp1

(d), . . . , vpk
(d)

)T a vector over F2 associated to 0 < d | n.
If m 6= 0, 1 is a square-free integer, then we denote by

• Fm = Q(
√
m) a quadratic field;

• Rm the Rédei matrix of Fm, with a submatrix R′
m, see (2.9) and (2.12);

• Am the narrow class group of Fm;
• Dm the discriminant of Fm;
• ωm = (Dm +

√
Dm)/2;

• Om = Z+ Zωm the ring of integers of Fm;
• Dm the set of all square-free positive divisors of Dm;
• θm : Dm → Am[2] a two-to-one onto homomorphism, see Proposition 2.2;
• h2a(m) the 2a-rank of Am;
• K2Om the tame kernel of Fm;
• Bm = An +Dn,m/n a matrix associated to m, where n is the odd part of
|m|.

2. Preliminaries

2.1. The Monsky matrix. By the 2-descent method, Monsky in [HB94, Appen-
dix] represented the pure 2-Selmer group

Sel′2(En) :=
Sel2(En)

En(Q)[2]

as the kernel of a matrix Mn over F2. Let’s recall it roughly. One can identify
Sel2(En) with

{Λ = (d1, d2, d3) ∈ (Q×/Q×2)3 : DΛ(AQ) 6= ∅, d1d2d3 ≡ 1 mod Q×2},

where DΛ is a genus one curve defined by

(2.1)


H1 : −nt2 + d2u

2
2 − d3u

2
3 = 0,

H2 : −nt2 + d3u
2
3 − d1u

2
1 = 0,

H3 : 2nt2 + d1u
2
1 − d2u

2
2 = 0.

Under this identification, O, (n, 0), (−n, 0), (0, 0) and other point (x, y) ∈ En(Q)
correspond to (1, 1, 1), (2, 2n, n), (−2n, 2,−n), (−n, n,−1) and (x − n, x + n, x) re-
spectively.

Let n be an odd positive square-free integer with an ordered prime decomposition
n = p1 · · · pk. Denote by

(2.2) A2n = An := (aij)k×k where aij = [pj ,−n]pi
=

{[pj

pi

]
, i 6= j;[n/pi

pi

]
, i = j,

and

(2.3) Dn,ε := diag
{[ ε
p1

]
, . . . ,

[ ε
pk

]}
.

Then An1 = 0 and corankAn ≥ 1.
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Monsky showed that each element in Sel′2(En) can be represented as (d1, d2, d3),
where d1, d2, d3 are all positive divisors of n. The system DΛ is locally solvable
everywhere if and only if certain conditions on the Hilbert symbols hold. Then we
can express Sel′2(En) as the kernel of the Monsky matrix

(2.4) Mn :=

(
An +Dn,2 Dn,2

Dn,2 An +Dn,−2

)
via the isomorphism

(2.5)
Sel′2(En) → KerMn

(d1, d2, d3) 7→
(
ψn(d2)
ψn(d1)

)
,

where ψn(d) :=
(
vp1(d), . . . , vpk

(d)
)T ∈ Fk

2 for any positive divisor d of n.
Similarly, each element in Sel′2(E2n) can be represented as (d1, d2, d3), where

d1, d2, d3 are all divisors of n and d2 > 0, d3 ≡ 1 mod 4. Then we can express
Sel′2(E2n) as the kernel of the Monsky matrix

(2.6) M2n :=

(
AT

n +Dn,2 Dn,−1

Dn,2 An +Dn,2

)
via the isomorphism

(2.7)
Sel′2(E2n) → KerM2n

(d1, d2, d3) 7→
(
ψn(|d3|)
ψn(d2)

)
.

In both cases, we have

(2.8) s2(n) := dimF2
Sel′2(En) = corankMn.

2.2. The Cassels pairing. Cassels in [Cas98] defined a (skew-)symmetric bilinear
pairing 〈−,−〉 on the F2-vector space Sel′2(En). For any Λ ∈ Sel2(En), the equation
Hi in (2.1) is locally solvable everywhere. Thus Hi is solvable over Q by the Hasse-
Minkowski principal. Choose Qi ∈ Hi(Q) and let Li be a linear form such that
Li = 0 defines the tangent plane of Hi at Qi. For any Λ′ = (d′1, d

′
2, d

′
3) ∈ Sel2(En),

define the Cassels pairing

〈Λ,Λ′〉 =
∑
v

〈Λ,Λ′〉v ∈ F2 where 〈Λ,Λ′〉v =

3∑
i=1

[
Li(Pv), d

′
i

]
v
,

where Pv ∈ DΛ(Qv) for each place v of Q. This pairing is independent of the choice
of Pv, Qi and the representative Λ. It is (skew-)symmetric and satisfies 〈Λ,Λ〉 = 0.

Lemma 2.1 ([Cas98, Lemma 7.2]). The local Cassels pairing 〈−,−〉v = 0 if
• v ∤ 2∞,
• the coefficients of Hi and Li are all integral at v for i = 1, 2, 3, and
• modulo DΛ and Li = 0 by v, they define a curve of genus 1 over Fv together

with tangents to it.
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2.3. The narrow class group. Let Fm = Q(
√
m) be a quadratic field, where

m 6= 0, 1 is a square-free integer. We will use the notations introduced in §1.3.
Denote by N = NFm/Q the norm map. Fix an ordered decomposition of the odd
part n of |m|: n = p1 · · · pk. If 2 | D, denote by pk+1 = 2. Let t be the number of
prime factors of Dm. Then the Gauss genus theory tells:

Proposition 2.2 ([Hec81, Chapter 7]). (1) The map θm : Dm → Am[2] de-
fined as

θm(d) = [(d, ωm)]

is a two-to-one onto homomorphism. In particular,
h2(m) = dimF2

Am[2] = t− 1.

(2) Let a be a non-zero fractional ideal of Fm. Then the ideal class [a] ∈ A2
m if

and only if Na ∈ NFm.

When m < 0, the kernel of θm is {1, |m|}.
To calculate h4(m), we need the Rédei matrix, which is defined as

(2.9) Rm = ([pj ,m]pi
)t×t.

Example 2.3. Let n = p1 · · · pk be an odd positive square-free integer. Denote by

bn,ε :=
([ ε
p1

]
, . . . ,

[ ε
pk

])T

= Dn,ε1.

When n ≡ 1 mod 4, we have

Rn = An +Dn,−1, R−n =

(
An bn,2

bT
n,−1

[
2
n

]) ,
R2n =

(
An +Dn,−2 bn,2

bT
n,2

[
2
n

]) , R−2n =

(
An +Dn,2 bn,2

bT
n,−2

[
2
n

]) .
When n ≡ −1 mod 4, we have

Rn =

(
An +Dn,−1 bn,2

bT
n,−1

[
2
n

]) , R−n = An,

R2n =

(
An +Dn,−2 bn,2

bT
n,−2

[
2
n

]) , R−2n =

(
An +Dn,2 bn,2

bT
n,2

[
2
n

]) .
One can see that the following are equivalent:

• d ∈ Dm ∩NFm;
• X2 −mY 2 = dZ2 is solvable over Q;
• the Hilbert symbols (d,m)v = 1, ∀v;
• Rmd = 0, where d =

(
vp1

(d), . . . , vpt
(d)

)T.
Rédei showed that θm induces a two-to-one onto homomorphism
(2.10) θm : Dm ∩NFm → Am[2] ∩ A2

m,

which induces that
(2.11) h4(m) = corankRm − 1.

Denote by
(2.12) R′

m = ([pj ,m]pi
)k×t.
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If 2 | Dm, then R′
m is the submatrix of Rm by removing the last row; otherwise

R′
m = Rm. Since 1TRm = 0T, we have

(2.13) rankR′
m = rankRm.

See [Rè34] and [LY20, Example 2.6].
The 8-rank h8(m) can be obtained by the following proposition, which is similar

to [Wan16, Proposition 3.6]. See also [JY11, Lu15].

Proposition 2.4. For any d ∈ Dm ∩ NFm, let (α, β, γ) be a primitive positive
solution of

dα2 − m

d
β2 = 4γ2.

Then
(1) θm(d) ∈ A4

m if and only if
(
[γ,m]p1 , . . . , [γ,m]pt

)T ∈ ImRm;
(2)

∑t
i=1[γ,m]pi

= 0.
In particular, θm(d) ∈ A4

m if and only if bn,γ ∈ ImR′
m, where n is the odd part of

|m|.

Proof. Denote by σ the non-trivial automorphism of Q(
√
m). If p is an odd prime

factor of γ, then p ∤ m and
(
m
p

)
= 1. Thus (p) = ppσ is split in Fm and [γ,m]p = 0.

We will show that x = (dα+ β
√
m)/2 ∈ Om.

• If d is odd and m is even, then both of α and β are even and x ∈ Om.
• If d,m are odd, then α and β have same parities. If moreover both of α

and β are odd, then 4 | (d−m/d), m ≡ 1 mod 4 and x ∈ Om.
• If d is even, then β is even and x ∈ Om.

Certainly, x is totally positive and p | dγ2 = N(x). If both p, pσ divide xOm, then
pOm | xOm and p | α, β, γ, which contradicts to gcd(α, β, γ) = 1. Hence only one
of p and pσ divides xOm. We may assume that pσ | xOm for each odd p | γ.

Assume that d is odd. If γ is odd, we have

(2.14) xOm = d
∏
p|γ

(pσ)2vp(γ) = γ2dc−2, where c :=
∏
p|γ

pvp(γ) with Nc = γ

and d = (d, ωm). If γ is even, one can show that m is odd. Then both of α and β
are odd, 8 | (d−m/d) and m ≡ 1 mod 8. Thus 2Om = qqσ is split in F . Similarly,
only one of q and qσ divides xOm. We may assume that qσ | xOm. Hence we also
have (2.14), where p is q for p = 2.

Assume that d is even. Then Dm is even, m 6≡ 1 mod 4 and 2Om = q2 is ramified
in F . Similarly, we have (2.14), where p = pσ = q for p = 2.

(1) By (2.14), we have [d] = [c]2. Clearly, [d] ∈ A4
m if and only if [c]+[(a, ωm)] ∈

A2
m for some a ∈ Dm. This is equivalent to aNc = aγ ∈ NFm by Proposi-

tion 2.2. Note that
• [aγ,m]p = 1 for any odd prime p | γ;
• [aγ,m]∞ = 1 because aγ > 0;
• if 2 ∤ Dm and γ is odd, then a is odd and m ≡ 1 mod 4; if 2 ∤ Dm and
γ is even, then m ≡ 1 mod 8.

In other words, [aγ,m]v = 1 for all v ∤ Dm. Thus aγ ∈ NFm if and only if
[a,m]pi

= [γ,m]pi
for all pi | Dm, if and only if

Rm

(
vp1

(a), . . . , vpt
(a)

)T
=

(
[γ,m]p1

, . . . , [γ,m]pt

)T
.
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(2) Denote by γ0 the odd part of γ. If m 6≡ 1 mod 4, then Dm is even and
t∑

i=1

[γ,m]pi =
∑
p|γ0

[γ,m]p = 0.

Here, [γ,m]∞ = 0 because γ > 0. If m ≡ 1 mod 4 and γ is odd, then
[γ,m]2 = 0; if m ≡ 1 mod 4 and γ is even, then m ≡ 1 mod 8 and [γ,m]2 =
0, as shown in the proof of (1). Therefore

t∑
i=1

[γ,m]pi
=

∑
p|γ0

[γ0,m]p + [γ,m]2 = 0. □

2.4. The tame kernel. Denote by K2Om the tame kernel of Fm. We list the
results about 2-rank and 4-rank of K2Om that we will use. Assume that |m| > 2.

Theorem 2.5 ([BS82]). The subgroup K2Om[2] is generated by the Steinberg sym-
bols

• {−1, d}, d | m;
• {−1, u+

√
m}, where m = u2 − cw2 for some c = −1,±2 and u,w ∈ N.

Denote by k the number of odd prime factors of m. Then

r2(K2Om) =

{
k + log2 #

(
{±1,±2} ∩NFm

)
; if m > 2;

k − 1 + log2 #
(
{1, 2} ∩NFm

)
; if m < −2.

Theorem 2.6 ([Qin95b, Theorem 3.4]). Suppose that m > 2. Denote by V1 the set
of positive d | n satisfying: there exists ε ∈ {±1,±2} such that (d,−m)p =

(
ε
p

)
, ∀p |

n. If 2 ∈ NFm, then write m = 2µ2 − λ2, µ, λ ∈ N and denote by V2 the set of
positive d | n satisfying: there exists ε ∈ {±1} such that (d,−m)p =

(
εµ
p

)
, ∀p | n.

We have
2r4(K2Om)+1 = #V1 +#V2.

Theorem 2.7 ([Qin95a, Theorem 4.1]). Suppose that m < −2. Denote by V1 the
set of d | n satisfying: there exists ε ∈ {1, 2} such that (d,−m)p =

(
ε
p

)
, ∀p | n. If

2 ∈ NFm, then write m = 2µ2 − λ2, µ, λ ∈ N and denote by V2 the set of d | n
satisfying: (d,−m)p =

(
µ
p

)
, ∀p | n. We have

2r4(K2Om)+2 = #V1 +#V2.

Here, V2 = ∅ if 2 /∈ NFm.
Let’s translate these results into the language of matrices. Denote by n the odd

part of |m| and denote by Bm = An + Dn,m/n, where An is defined as (2.2). If
m > 2, then
(2.15) #{x : Bmx = bn,±1,bn,±2}+#{x : Bmx = bn,±µ} = 2r4(K2Om)+1.

If m < −2, then
(2.16)

#{x : Bmx = 0,bn,2}+#{x : Bmx = bn,µ} =

{
2r4(K2Om)+2, if bn,−1 /∈ ImBm;

2r4(K2Om)+1, if bn,−1 ∈ ImBm.

Theorem 2.8. Assume that n = p1 · · · pk is an odd positive square-free integer,
where all prime factors pi are congruent to ±1 modulo 8 and n ≡ 1 mod 8. Write
n = λ2 − 2µ2 where λ, µ ∈ N.



10 SHENXING ZHANG

(1) We have h4(n) + 1 = h4(2n) = h4(−n) = h4(−2n) = corankAn.
(2) If h4(−n) = 1, then h8(−n) = 1 −

[
λ+µ
d

]
. If moreover all pi ≡ 1 mod 8,

then h8(−n) = 1−
[√

2+1
n

]
.

(3) If h4(−2n) = 1, then h8(−2n) = 1 −
[
λ
d

]
. If moreover all pi ≡ 1 mod 8,

then h8(−2n) = 1−
[√

2
n

]
.

(4) Assume that all pi ≡ 1 mod 8. We have r4(K2O−2n) = 0 if and only if
h4(−n) = 1, h8(−n) + h8(−2n) = 1. If h4(−n) = 1, then r4(K2O−2n) ≤ 1.

(5) Assume that all pi ≡ 1 mod 8. We have r4(K2On) = 0 if and only if
h4(−n) = 1, h8(−n) = 0. If h4(−n) = 1, then r4(K2On) ≤ 1.

Here, 1 < d | n such that AT
nψn(d) = 0.

Proof. (1) By the quadratic reciprocity law, we have
(2.17) AT

n = An +Dn,−1 + bn,−1b
T
n,−1.

By bT
n,−1bn,−1 = bT

n,−11 =
[−1

n

]
= 0, one can show that

AT
n (I+ 1bT

n,−1) = An +Dn,−1,

where I+ 1bT
n,−1 is invertible since (I+ 1bT

n,−1)
2 = I. Thus

rankRn = rankR′
−n = rankR′

±2n = rankAn,

which concludes the result by (2.11) and (2.13).
(2) Since θ−n(n) = [(

√
−n)] is the trivial class, we have

A−n[2] ∩ A2
−n =

{
[(1)], θ−n(2)

}
,

where θ−n(2) = θ−n(2n). Note that (λ+2µ, 2, λ+µ) is a primitive positive
solution of 2α2 + n

2β
2 = 4γ2. Since ImR′

−n = {x : ψ(d)
T
x = 0}, by

Proposition 2.4, we have h8(−n) = 1 if and only if bn,λ+µ ∈ ImR′
−n, if

and only if 0 = ψ(d)
T
bn,λ+µ =

[
λ+µ
d

]
.

If all pi ≡ 1 mod 8, then d = n since AT
n1 = 0. Let µ′ be the odd part

of µ. Then

(2.18)
[µ
n

]
=

[ n
µ′

]
=

[λ2 − 2µ2

µ′

]
= 0.

Since λ ≡ ±
√
2µ mod pi, we have

[
λ+µ
n

]
=

[√
2+1
n

]
.

(3) Note that (2µ, 2, λ) is a primitive positive solution of 2α2+nβ2 = 4γ2. The
result follows from arguments similar to (2).

(4) In this case, B−2n = An and B−2n1 = bn,−1. Note that
m = −2n = 2(λ+ 2µ)2 − (2λ+ 2µ)2.

By (2.16), r4(K2O−2n) = 0 if and only if corankAn = 1 and bn,λ+2µ /∈
ImAn, if and only if h4(−n) = 1 and

1 = 1Tbn,λ+2µ =
[λ+ 2µ

n

]
=

[√2 + 2

n

]
=

[√2 + 1

n

]
+
[√2

n

]
,

i.e., h8(−n) + h8(−2n) = 1.
If h4(−n) = 1, then corankAn = 1. Thus Anx = 0 has two so-

lutions, Anx = bn,λ+2µ has at most two solutions. Thus implies that
r4(K2O−2n) ≤ 1 by (2.16).

(5) The proof is similar to (4). □
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Proposition 2.9. Let n = p1 · · · pk ≡ 1 mod 8 be a square-free positive integer with
odd prime factors pi such that pi ≡ ±1 mod 8 for all i. If h4(−n) = 1, then

h8(−n) + h8(−2n) ≡ d− 1

8
mod 2,

where d is the unique divisor of n such that (d, n)v = 1, ∀v and d 6= 1, d ≡ 1 mod 4.

Proof. Notice that d =
(−1
|d|

)
|d| and

0 = [d, n]pi
= [d,−1]pi

+ [d,−n]pi

= [d,−1]pi
+ [|d|,−n]pi

+
[−1

|d|

]
[−1,−n]pi

= [d,−1]pi
+ [|d|,−n]pi

+
[−1

|d|

][−1

pi

]
,

we have

0 = Dn,−1ψn(|d|) +Anψn(|d|) +
[−1

|d|

]
bn,−1

= (An +Dn,−1)ψn(|d|) + bn,−1b
T
n,−1ψn(|d|) = AT

nψn(|d|)

by (2.17). Write n = λ2 − 2µ2 where λ, µ ∈ N. By Theorem 2.8 (2) and (3),
h8(−n) + h8(−2n) = 1 if and only if

1 =
[λ(λ+ µ)

|d|

]
=

[1 + µ/λ

|d|

]
=

[2 +√
2

|d|

]
,

which is equivalent to d ≡ 9 mod 16 by [Zha23, Lemma 5.4]. □

3. The Selmer groups and the Cassles pairings

Let n = PQ be a square-free positive integer with an ordered prime decomposi-
tion

n = gcd(2, n)p1 · · · pkq1 · · · qℓ,
where P = p1 · · · pk, Q = gcd(2, n)q1 · · · qℓ. Assume that p1 ≡ · · · ≡ pk ≡ 1 mod 8
and there exists

u = (u1, . . . , uk)
T ∈ Fk

2 , v = (v1, . . . , vℓ)
T ∈ Fℓ

2

such that the Legendre symbol
[
pi

qj

]
= uivj . Clearly,

1Tu =

k∑
i=1

ui and 1Tv =

ℓ∑
j=1

vj .

Lemma 3.1. Assume that 1Tu = 0,1Tv = 1, p1 ≡ · · · ≡ pk ≡ 1 mod 8 and Q is
non-congruent with X(EQ)[2

∞] = 0. Then

KerMn =



x
0
z
0


∣∣∣∣∣ x, z ∈ Ker(AP +UP )


In particular, s2(n) = 2 corank(AP +UP ).
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Proof. Note that An1 = 0 and AT
P = AP . By our assumptions,

An =

(
AP +UP uvT

vuT AQ

)
and AT

n =

(
AP +UP uvT

vuT AT
Q

)
.

Note that DP,±2 = Ok. If Q is odd, we have

Mn =


AP +UP uvT Ok

vuT AQ +DQ,2 DQ,2

Ok AP +UP uvT

DQ,2 vuT AQ +DQ,−2

 .

If Q is even, we have

Mn =


AP +UP uvT Ok

vuT AT
Q +DQ,2 DQ,−1

Ok AP +UP uvT

DQ,2 vuT AQ +DQ,2

 .

If 
x
y
z
w

 ∈ KerMn,

then
(AP +UP )x = uvTy, (AP +UP )z = uvTw

and

MQ

(
y
w

)
=

(
vuTx
vuTz

)
.

Since AP = AT
P , we have 1TAP = 0T and

(3.1) 0 = 1TuvTy = 1T(AP +UP )x = 1TUPx = uTx.

Similarly, uTz = 0. Thus

MQ

(
y
w

)
= 0.

Since s2(Q) = 0, MQ is invertible and we have y = w = 0. Thus x, z ∈ Ker(AP +
UP ),

KerMn =



x
0
z
0


∣∣∣∣∣ x, z ∈ Ker(AP +UP )


and s2(n) = 2 corank(AP +UP ). □

Proposition 3.2. Let fi, fj be two positive divisors of P such that gcd(fi, fj) = 1
and ψP (fi), ψP (fj) ∈ Ker(AP +UP ). Denote by

Λt = (ft, 1, ft) and Λ′
t = (ft, ft, 1)
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for t = i, j. Then

〈Λ′
i,Λi〉 =

[√2 + 1

fi

]
+

[γi
fi

]
=

[√2 + 1

fi

]
+

[γ′i
fi

]
,

〈Λ′
i,Λj〉 =

[γi
fj

]
=

[γ′j
fi

]
,

〈Λ′
i,Λ

′
i〉 =

[γiγ′i
fi

]
, 〈Λ′

i,Λ
′
j〉 =

[γiγ′i
fj

]
,

where (αi, βi, γi)
(
resp. (α′

i, β
′
i, γ

′
i)
)

is a primitive positive solution of

fiα
2
i +

n

fi
β2
i = 4γ2i

(
resp. fiα′2

i − n

fi
β′2
i = 4γ′2i

)
.

Proof. Let (α′′
i , β

′′
i , γ

′′
i ) be a primitive positive solution of fiα′′2

i − 2n
fi
β′′2
i = 4γ′′2i .

It’s easy to see that αi, βi, γi, α
′
i, β

′
i, γ

′
i, α

′′
i , β

′′
i , γ

′′
i are coprime to n/ gcd(2, n).

(1) Recall that DΛi is defined by
H1 : −nt2 + u22 − fiu

2
3 = 0,

H2 : − n
fi
t2 + u23 − u21 = 0,

H3 : 2nt2 + fiu
2
1 − u22 = 0.

Choose

Q1 = (β′
i, fiα

′
i, 2γ

′
i) ∈ H1(Q), L1 =

n

fi
β′
it− α′

iu2 + 2γ′iu3,

Q2 = (0, 1,−1) ∈ H2(Q), L2 = u3 + u1,

Q3 = (β′′
i , 2γ

′′
i , fiα

′′
i ) ∈ H3(Q), L3 =

2n

fi
β′′
i t+ 2γ′′i u1 − α′′

i u2.

By (3.1), we have uTψP (ft) = 0, which implies that

(3.2)
[ft
qs

]
=

∑
pr|ft

urvs = vsu
TψP (ft) = 0.

If v = ps | P , then
[
qt
ps

]
=

[
ps

qt

]
= usvt and ps ≡ 1 mod 8. Thus we have[Q
ps

]
= usv

T1 = us.

One can see that the s-th entry of the vector (AP +UP )ψP (fi) is

0 = us +
∑
p|fi

[p,−P ]ps
=

[Q
ps

]
+ [fi,−P ]ps

=
[Q
ps

]
+

[P/fi
ps

]
=

[n/fi
ps

]
if ps | fi;

(3.3) 0 =
∑
p|fi

[p,−P ]ps = [fi,−P ]ps =
[ fi
ps

]
.

if ps | P
fi

.
(i) The case v = ps | fi. Take

Pv = (t, u1, u2, u3) =
(
1,
√
−2n/fi, 0,

√
−n/fi

)
.
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Note that (
β′
i

√
−n/fi + 2γ′i

)(
−β′

i

√
−n/fi + 2γ′i

)
= fiα

′2
i

and one of ±β′
i

√
−n/fi+2γ′i is congruent to 4γ′i modulo v. Since [fi, ft]v = 0

for t = i, j by (3.3), we have[
±β′

i

√
−n/fi + 2γ′i, ft

]
v
= [4γ′i, ft]v.

Then [
L1(Pv), ft

]
v
=

[
4γ′i

√
−n/fi, ft

]
v
=

[
γ′i
√

−n/fi, ft
]
v
.

Similarly,[
L2(Pv), ft

]
v
=

[
(
√
2 + 1)

√
−n/fi, ft

]
v
,[

L3(Pv), ft
]
v
=

[
4
√
2γ′′i

√
−n/fi, ft

]
v
=

[√
2γ′′i

√
−n/fi, ft

]
v
.

Thus [
L1L2(Pv), ft

]
v
=

[
(
√
2 + 1)γ′i, ft

]
v
,[

L1L3(Pv), ft
]
v
=

[√
2γ′iγ

′′
i , ft

]
v
.

(ii) The case v = ps | P
fi

. Take

Pv = (t, u1, u2, u3) =
(
0, 1,

√
fi, 1

)
.

Similarly to (i), we have[
L1(Pv), ft

]
v
= [4γ′i, ft]v = [γ′i, ft]v,[

L2(Pv), ft
]
v
= [2, ft]v = 0,[

L3(Pv), ft
]
v
= [4γ′′i , ft]v = [γ′′i , ft]v,

and then [
L1L2(Pv), ft

]
v
= [γ′i, ft]v,[

L1L3(Pv), ft
]
v
= [γ′iγ

′′
i , ft]v.

By Lemma 2.1 and (3.2), we have

(3.4)

〈Λi,Λi〉 =
∑
v|fi

[√
2γ′iγ

′′
i , fi

]
v
+

∑
v| P

fi

[γ′iγ
′′
i , fi]v =

[√2γ′iγ
′′
i

fi

]
,

〈Λi,Λj〉 =
∑
v|fi

[√
2γ′iγ

′′
i , fj

]
v
+

∑
v| P

fi

[γ′iγ
′′
i , fj ]v =

[γ′iγ′′i
fj

]
,

〈Λi,Λ
′
i〉 =

∑
v|fi

[
(
√
2 + 1)γ′i, fi

]
v
+

∑
v| P

fi

[γ′i, fi]v =
[ (√2 + 1)γ′i

fi

]
,

〈Λi,Λ
′
j〉 =

∑
v|fi

[
(
√
2 + 1)γ′i, fj

]
v
+

∑
v| P

fi

[γ′i, fj ]v =
[γ′i
fj

]
,
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(2) Recall that DΛ′
i

is defined by
H1 : −nt2 + fiu

2
2 − u23 = 0,

H2 : −nt2 + u23 − fiu
2
1 = 0,

H3 : 2n
fi
t2 + u21 − u22 = 0.

Choose

Q1 = (βi, 2γi, fiαi) ∈ H1(Q), L1 =
n

fi
βit− 2γiu2 + αiu3,

Q2 = (β′
i, fiα

′
i, 2γ

′
i) ∈ H2(Q), L2 =

n

fi
β′
it− α′

iu3 + 2γ′iu1,

Q3 = (0, 1,−1) ∈ H3(Q), L3 = u1 + u2.

(i) The case v | fi. Take

Pv = (t, u1, u2, u3) =
(
1,
√
−n/fi,

√
n/fi, 0

)
.

Similarly, we have[
L1(Pv), ft

]
v
=

[
4γi

√
n/fi, ft

]
v
=

[
γi
√
n/fi, ft

]
v
,[

L2(Pv), ft
]
v
=

[
4γ′i

√
−n/fi, ft

]
v
=

[
γ′i
√

−n/fi, ft
]
v
,[

L3(Pv), ft
]
v
=

[
(
√
−1 + 1)

√
n/fi, ft

]
v
,

and then[
L1L2(Pv), ft

]
v
=

[√
−1γiγ

′
i, ft

]
v
=

[
γiγ

′
i, ft

]
v
,[

L1L3(Pv), ft
]
v
=

[
(
√
−1 + 1)γi, ft

]
v
=

[
(
√
2 + 1)γi, ft

]
v
.

Here, we use the fact that

4
√
−1 = (

√
2 +

√
−2)2,

(
√
2 + 1)(

√
−1 + 1) =

1

2
(
√
2 +

√
−1 + 1)2

are squares in Qv.
(ii) The case v | P

fi
. Take

Pv = (t, u1, u2, u3) =
(
0, 1, 1,

√
fi
)
.

Similarly, we have[
L1(Pv), ft

]
v
= [−4γi, ft]v = [γi, ft]v,[

L2(Pv), ft
]
v
= [4γ′i, ft]v = [γ′i, ft]v,[

L3(Pv), ft
]
v
= [2, ft]v = 0,

and then [
L1L2(Pv), ft

]
v
= [γiγ

′
i, ft]v,[

L1L3(Pv), ft
]
v
= [γi, ft]v.
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By Lemma 2.1 and (3.2), we have

(3.5)

〈Λ′
i,Λ

′
i〉 =

∑
v|fi

[γiγ
′
i, fi]v +

∑
v| P

fi

[γiγ
′
i, fi]v =

[γiγ′i
fi

]
,

〈Λ′
i,Λ

′
j〉 =

∑
v|fi

[γiγ
′
i, fj ]v +

∑
v| P

fi

[γiγ
′
i, fj ]v =

[γiγ′i
fj

]
,

〈Λ′
i,Λi〉 =

∑
v|fi

[
(
√
2 + 1)γi, fi

]
v
+

∑
v| P

fi

[γi, fi]v =
[ (√2 + 1)γi

fi

]
,

〈Λ′
i,Λj〉 =

∑
v|fi

[
(
√
2 + 1)γi, fj

]
v
+

∑
v| P

fi

[γi, fj ]v =
[γi
fj

]
,

Finally, we conclude the results by (3.4) and (3.5). □

4. Proof of main theorems

Lemma 4.1. The following are equivalent:
• n is non-congruent with X(En)[2

∞] ∼= (Z/2Z)s2(n);
• the Cassels pairing on Sel′2(En) is non-degenerate.

Proof. The proof is due to [Wan16, pp 2146, 2157]. Since

0 → En[2] → En[4]
×2−→ En[2] → 0

is exact, we have the long exact sequence

0 → En(Q)[2]

2En(Q)[4]
→ Sel2(En) → Sel4(En) → ImSel4(En) → 0,

where ImSel4(En) is the image of Sel4(En)
×2−→ Sel2(En). It’s known that the

kernel of the Cassels pairing on Sel2(En) is ImSel4(En). Thus

rankZEn(Q) = 0, X(En)[2
∞] ∼= (Z/2Z)s2(n)

if and only if #Sel2(En) = #Sel4(En), if and only if ImSel4(En) = En[2] in
Sel2(En), if and only if the Cassels pairing on Sel′2(En) is non-degenerate. □

Proof of Theorem 1.4. It follows from Lemma 3.1 that s2(n) = 0 if and only if
AP +UP is invertible. This concludes the result. □

Proof of Theorem 1.5. By Lemma 3.1, s2(n) = 2 if and only if corank(AP +UP ) =
1. Assume that corank(AP +UP ) = 1 from now on. By our assumptions, ψP (d)
is a non-zero vector lying in Ker(AP +UP ). Then

KerMn =



0
0
0
0

 ,


0
0

ψP (d)
0

 ,


ψP (d)

0
0
0

 ,


ψP (d)

0
ψP (d)

0


 .

Thus
Sel′2(En) = {(1, 1, 1), (d, 1, d), (1, d, d), (d, d, 1)}

by (2.5) and (2.7).
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Denote by Λ = (d, 1, d) and Λ′ = (d, d, 1). Then

〈Λ,Λ′〉 =
[√2 + 1

d

]
+
[γ
d

]
by Proposition 3.2. Hence the Cassels pairing on Sel′2(En) is non-degenerate if and
only if

(√
2+1
d

)(
γ
d

)
= −1. Conclude the results by Lemma 4.1. □

Proof of Corollary 1.6. Take u = 0 and v = (1, 0, . . . , 0)T in Theorem 1.5, we
obtain that UP = O. Thus corank(AP +UP ) = 1 if and only if corankAP = 1, if
and only if h4(−P ) = 1 by (2.11).

Since AP1 = 0, the non-zero vector in KerAP is ψP (d) = 1. Thus d = P and
we conclude the result by Theorem 2.8 (2) and (5). □

Example 4.2. We give two examples to show that our results produce new non-
congruent numbers.

(1) Clearly, M3 =

(
1 1
1 0

)
. Thus q = 3 is a non-congruent number with

X(E3)[2
∞] = 0. If p = 193, then

(
p
q

)
= 1, Ap = 0 and h4(−p) = 1. Since

522 ≡ 2 mod p, we have

h8(−p) = 1−
[√2 + 1

p

]
= 1−

[ 53

193

]
= 0.

Since 193×12+3×12 = 4×72 and
(
7
p

)
= 1, we obtain that n = pq = 3×193

is non-congruent with X(En)[2
∞] ∼= (Z/2Z)2 by Corollary 1.6.

(2) Clearly, M10 =

(
1 0
1 1

)
. Thus Q = 2q = 10 is a non-congruent number

with X(E10)[2
∞] = 0. If p = 241 = 232 − 2 × 122, then

(
p
q

)
= 1, Ap = 0

and h4(−p) = 1. Since 222 ≡ 2 mod p, we have

h8(−p) = 1−
[√2 + 1

p

]
= 1−

[ 23

241

]
= 0.

Since 241×22+10×242 = 4×412 and
(
41
p

)
= 1, we obtain that n = 2pq =

10× 241 is non-congruent with X(En)[2
∞] ∼= (Z/2Z)2 by Corollary 1.6.

Proof of Corollary 1.7. (1) Note that (α, β, γ) = (4, 2n− 2, n+1) is a positive
primitive solution of nα2 + β2 = 4γ2. Thus

[
γ
n

]
=

[
n+1
n

]
= 0. This

concludes the result by Corollary 1.6 and Theorem 2.8 (5).
(2) Write n = λ2 − 2µ2 where λ, µ ∈ N. Then (2, 2µ, λ) is a primitive positive

solution of nα2+2β2 = 4γ2. By Theorem 2.8 (3),
[
λ
n

]
= 1−h8(−2n). This

conclude the result by Theorem 2.8 (4) and Corollary 1.6. □

Proof of Theorem 1.8. By our assumptions (we rearrange the order of prime factors
of P ),

AP +UP = AP = diag
{
Af1 , · · ·Afr

}
.
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Since h4(−fi) = 1, we have corankAfi = 1 by Theorem 2.8 (1). Since Afi1 = 0,
we have s2(n) = 2r and the kernel of Mn is consists of vectors

c1
...
cr
0
d1

...
dr

0


,

where ci,di = 0 or 1 are vectors in KerAfi . Thus Sel′2(En) is generated by
Λ1, . . . ,Λr,Λ

′
1, . . . ,Λ

′
r, where

Λi = (fi, 1, fi), Λ′
i = (fi, fi, 1)

by (2.5) and (2.7). By Proposition 3.2, we have
[ γ′

i

fj

]
=

[γj

fi

]
and the Cassles pairing

with respect to this basis is

X =

(
∗ BT +C

B+C B+BT

)
,

where

B =
([γi
fj

])
r×r

and C = diag
{[√2 + 1

f1

]
, · · · ,

[√2 + 1

fr

]}
.

Since h4(−fi) = 1, we have
C = diag

{
1− h8(−f1), · · · , 1− h8(−fr)

}
by Theorem 2.8 (2). By our assumptions,

B = diag
{
h8(−f1), · · · , h8(−fr)

}
.

Therefore, X =

(
∗ I
I O

)
is invertible, i.e., the Cassles pairing on Sel′2(En) is non-

degenerate. Conclude the results by Lemma 4.1. □

Proof of Corollary 1.9. (1) Since
R−n = diag{An, 0} = diag{Af1 , · · ·Afr , 0},

we have h4(−n) = r and A−n[2]∩A2
−n is generated by θ−n(f1), . . . , θ−n(fr−1)

and θ−n(2) by (2.10) and (2.11). Here, one notice that
θ−n(f1) · · · θ−n(fr) = θ−n(n) = [(

√
−n)]

is the trivial class. If h8(−n) = r, or h8(−n) = r − 1 and [(2,
√
−n)] /∈

A4
−n, then all θ−n(fi) ∈ A−n[2] ∩ A4

−n. By Proposition 2.4, this implies
that bn,γi

∈ ImAn, where (αi, βi, γi) is a primitive positive solution of
fiα

2
i − n

fi
β2
i = 4γ2i . Thus bfj ,γi

∈ ImAfj for all j. Since 1TAfj = 0T, we
have

0 = 1Tbfj ,γi
=

[γi
fj

]
.

Conclude the results by Theorem 1.8.
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(2) Similar to (1), h4(−2n) = r and A−2n[2] ∩A2
−2n is generated by θ−2n(f1),

. . . , θ−2n(fr) by (2.10) and (2.11). Here, one notice that
θ−2n(2) = θ−2n(f1) · · · θ−2n(fr)

since θ−2n(2n) = [(
√
−2n)] is the trivial class. If h8(−2n) = r, then all

θ−2n(fi) ∈ A−2n[2]∩A4
−2n. One can conclude the results similar to (1). □

This paper reveals a new phenomenon: for a general non-congruent number
n with the second minimal 2-primary Shafarevich group, the criterion cannot be
expressed solely in terms of the 4-ranks and 8-ranks of class groups of quadratic
fields, even though this is possible when the prime factors of n lie in certain residue
classes. A key remaining problem is how to find simple arithmetic conditions that
characterize non-congruent numbers with specific 2-primary Shafarevich groups.
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