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Abstract—Mandelbug-caused software failures are significant
threats to system availability, especially in the context of mission-
critical and safety-critical systems. However, there is still no sys-
tematic method for keeping the software free from Mandelbugs
before release. To guarantee the availability of systems suffering
from Mandelbugs, environmental-diversity-based fault tolerance
techniques have been proposed to recover from the failures caused
by them. In this article, we develop and study an analytic model
to assess the availability of systems that utilize a sequence of
environmental-diversity-based recovery methods. Improving over
previous relevant studies, the availability formula we obtain in this
article works for any number of recovery methods the system is
equipped with; it is also independent on both the nature of those
recovery methods and the order of their utilization. In addition,
we consider the problem of how to arrange the set of available
recovery methods to achieve the largest system availability. Based
on the results of our analysis, we develop an open-source tool,
called OPENS, which assists in the calculation of the optimal system
availability. We validate the effectiveness of the proposed modeling
approach in two ways, namely by comparing our results with those
obtained for specific systems considered in relevant studies and by
conducting numerical analyses for more general scenarios of its
application.

Index Terms—Fault tolerance, imperfect coverage, Mandelbug,
recovery methods, semi-Markov process (SMP).

NOMENCLATURE

s Sequence of recovery methods chosen in the system
for failure mitigation.
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rri ith recovery method in the sequence s.
MTTF(s) System’s overall mean time to failure, as a function

of the sequence of recovery methods s.
MTTR(s) System’s overall mean time to recovery, as a func-

tion of the sequence of recovery methods s.
SSA(s) System’s steady-state availability, as a function of

the sequence of recovery methods s.
ci Coverage of rri.
ci Imperfect coverage of rri, and ci = 1− ci.
hUH

System’s MTTF after a human-fix.
hDD Mean time to execute failure diagnosis and

detection.
hDH

Mean time to execute the human-fix.
hDi

Mean time to execute rri.
hUi

System’s MTTF after a successful recovery by
executing rri.

I. INTRODUCTION

AVAILABILITY is a critical attribute of dependability for
systems that require continuous operation for months or

years, such as servers and safety-critical systems. Even a very
short unavailability of such systems could lead to tremendous
economic losses. Because of the critical role played by software
in current systems, it is pivotal to ensure high software availabil-
ity in order to guarantee availability of the entire system. Even
though considerable effort is spent on techniques such as model
checking and testing to prevent failures in the field, failures due
to software are too common in practice.

To better address software failures, it is essential to understand
their nature. Based on empirical studies on released software
projects, including MySQL, Linux, several from NASA, etc.,
Grottke and Trivedi [1]–[3] observe that the causes of failures,
namely software faults (or bugs), can be categorized into two
types, namely Bohrbugs and Mandelbugs, based on their re-
producibility. The reproducibility indicates the extent of the
difficulty in identifying a failure reproduction pattern. Failures
caused by Bohrbugs are easily reproduced by applying specific
workloads. In contrast, a Mandelbug denotes a fault that is
elusive, and failures caused by such bugs are hard to reproduce.
According to [4]–[6], the root cause of the elusive behaviors
is that Mandelbug failure manifestation is affected not only by
the direct program inputs (or workload) but also by the system’s
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current execution environment. The execution environment may
include other software, such as concurrent applications running
shared resources, the underlying operating system, as well as
hardware entities, such as disks, memory, and firmware. Because
of these environmental dependencies, it is hard to systematically
detect and remove Mandelbugs. If Mandelbugs escape the test-
ing phase, they can pose severe challenges to the availability of
the released system.

On the other hand, the elusive nature of Mandelbugs intro-
duces an opportunity for improving the system availability at
the operational time by means of fault tolerance techniques.
According to [3], [4], and [7], the software failures caused by
Mandelbugs can be recovered by a new type of fault tolerance
technique based on environmental diversity. The existing meth-
ods falling into this type mainly include restart, reboot, and
reconfigure, and we refer to these methods as environmental-
diversity-based recovery methods (recovery methods for short)
in this context. The rationale behind the claim that the recovery
methods can alleviate the impact of Mandelbugs is that the
current execution environments will be changed after recovery
and the fault activation preconditions may not be satisfied again.

Environmental diversity is easier to implement than tradi-
tional fault tolerance techniques, such as design diversity [8]
and data diversity [9], to address Mandelbugs-triggered failures.
Techniques such as reboot or restart are less complex to deploy
and require limited effort for their implementation. Thereby, it
is common for a complex software system to be equipped with
distinct recovery methods that can be used on several subentities
at the same time to cover different types of failures [10]. For
instance, the IBM SIP Application Server cluster contains a large
number of subentities, including proxy servers and application
servers [11], and each subentity is equipped with several recov-
ery methods [11]. In general, it is possible for a complex software
system to be equipped with any number of recovery methods,
and those recovery methods may be of a very distinct nature
and be arranged in different orders to cope with failures. When
multiple and diverse recovery methods are available, and many
options exist about the order of their application, the following
questions become very relevant.

RQ1: How does one evaluate the availability of a system
utilizing a sequence of environmental-diversity-based
recovery methods?

RQ2: How does one optimize the sequence of the recovery
methods to maximize the system availability?

To the best of our knowledge, only the work in [12] and its
extension [10] have dealt with the first of the above research
questions, and there is still no systematic study heading toward
the second research question. The main reason of this limitation
is that none considered a scenario where the number of recovery
methods is arbitrary and their order of application is not fixed.
Regarding RQ1, the focus of [10] and [12] is on the evaluation of
the availability for systems equipped with exactly four specific
recovery methods, which are arranged in a fixed order. Taking
into account the possibility that recovery methods may have
very distinct natures and be arranged in different orders makes
answering RQ1 require a more general analytic model, one that
cannot be obtained straightforwardly from [10]. Regarding the
answer to RQ2, it is absolutely not obvious because multiple

traits associated with every recovery method require balancing
for obtaining the optimal sequence.

In this article, we conduct an analytic study of system
availability for systems that are equipped with a sequence of
environmental-diversity-based recovery methods. We first pro-
pose a general recovery process model to describe the system
behavior in addressing failures caused by various types of faults,
including both Bohrbugs and Mandelbugs. The model allows the
target system to utilize any number of recovery methods that may
have a distinct nature and be arranged in different orders. We then
utilize the formalism of the semi-Markov process (SMP) [13] to
capture the recovery sequences and derive the formula for system
availability. Based on the formula, we further study the problem
of optimizing the sequence of available recovery methods for
the target system. In addition, we develop an open-source tool,
namely OPENS, to assist in the system availability calculation
and optimization. The validation of our analytic approach is
carried out by two steps. Since the system considered in the
published work [10] can be viewed as a special instance of the
one considered in the present work, we thereby compared the two
availability formulas for that particular system, and we found
that the two formulas are actually identical. On the other hand,
we conducted numerical analyses for more general scenarios of
the application of our approach.

Rest of this article is organized as follows. Section II provides
the background of this research. Section III describes the pro-
posed recovery process model. Section IV presents the stochastic
model of the system and its steady-state availability (SSA)
solution. Section V proposes a recovery sequence optimization
approach, and Section VI presents the numerical results. Finally,
Section VII concludes this article.

II. BACKGROUND

In this section, we provide the background on Mandelbug-
caused software failures and the environmental-diversity-based
fault tolerance techniques. After that, we further clarify the
motivation for this research.

A. Mandelbug-Caused Software Failures

A software failure is defined as an event that occurs when the
delivered service deviates from the correct service [14]. Before
a failure event takes place, according to the definition in [14],
there are following three necessary phases.

i) Fault (or bug) activation, in which the dormant fault
is activated by certain program inputs and an error is
produced.

ii) Error propagation, in which the error is successively
transformed among internal software subentities, such as
procedures and functions.

iii) Failure manifestation, in which the error propagates
across the boundary of the software and creates an in-
correct service.

After a failure occurs, a natural question is how to reproduce
the failure, in order to detect and then fix the bug (fault) that
caused the failure. The studies in [1]–[3] observe that various
failures could have very different levels of reproducibility. Soft-
ware failure reproducibility is used to indicate the ability or
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the ease in identifying fault activation patterns that cause the
failure to manifest. Based on their reproducibility, Grottke and
Trivedi [1] classify the bugs that are the causes of failures into
two types: Bohrbugs and Mandelbugs. The term Bohrbug is
used to denote an easy-to-reproduce bug that can be reproduced
deterministically by executing the failure-specific workloads,
which stand for the sequence of program inputs that cause the
failure to be observed. By contrast, the term Mandelbug is used to
denote the hard-to-reproduce bug whose reproduction process
is elusive, soft, and not systematic. In other words, under the
failure-specific workloads, a Mandelbug may not manifest itself
as a failure even after repeated attempts.

After studying failure mechanisms of Mandelbugs, re-
searchers in [4] observed that their elusive behavior is caused
by the execution environment of the software. Here, the notion
of “execution environment” denotes all other entities around
the concerned software entity. It may include software entities,
such as concurrent applications running shared resources, the
underlying operating system, as well as hardware entities, such
as disks, memory, and firmware, and even humans.

We consider three real examples to show how the environ-
ments affect the manifestation of Mandelbugs.

1) Bug #38691 in MySQL [15], whose activation is affected
by the scheduler of its execution environment. This fault is
hard to reproduce and it took almost two months to fix it.
The bug report states that the MySQL service component,
namely mysqld, can “sometimes” lead to database corrup-
tions. After inspections, it was detected that the corrup-
tions are introduced when optimizing locks for multiple
tables in a function called mysql_multi_update_prepare().

2) Bug #11805 in Linux kernel 2.6.26 [16], whose activa-
tion is affected by a hardware component of the envi-
ronment. This fault can be reproduced only when the
physical memory is temporarily full. After reproduction,
a segmentation fault occurs, and the machine enters a
frozen state. This fault was introduced in a function called
xfs_buf_get_noaddr().

3) Bug #776706 in Chrome browser 62.0 [17], the error
propagation process of which is affected by other firmware
inside the operating system. This issue can cause the CPU
utilization of the process of the Chrome browser to rise
to almost 100%, and it is caused by an incompatibility
between the Chrome browser and the GPU firmware.1

In general, Mandelbugs can account for a proportion of bugs
that cannot be ignored. For example, the proportion of Man-
delbugs in MySQL has been estimated to be approximately
38.0% [18]. When a Mandelbug manifests itself, recovering the
systems back to normal through repairing is usually a tedious and
time-consuming task. For instance, it took almost two months to
fix Bug #38691 in MySQL [15]. Therefore, effectively address-
ing the Mandelbug-caused failures is the key of ensuring the
availability of the system. Environmental-diversity-based fault
tolerance techniques can be applied as a cost-effective solution,
and they are introduced in the following section.

1[Online]. Available: https://bugs.chromium.org/p/chromium/issues/detail?
id=776706

B. Environmental Diversity

Environmental diversity is a set of strategies used to
tolerate faults (Mandelbugs) in a software system just as
design-diversity-based techniques were meant to tolerate
Bohrbugs in a software system. Fault tolerance is a technique for
reducing the consequences of residual software faults and thus
enhance the dependability of a system [19]. There are following
three critical phases in the use of fault tolerance techniques.
� Failure detection, in which an erroneous state is identified

by a chosen set of detection mechanisms. Usually, the
detection is carried out by verifying the calculated results
against expected software outputs or using metamorphic
properties [20].

� Failure diagnosis, in which the cause of the erroneous state
is assessed on the basis of relevant information, such as
system log files, failure phenomenon descriptions, etc. The
diagnosis could be carried out either by manual verification
or by automatic methods [21].

� Failure recovery, in which predetermined techniques are
applied in an attempt to recover the system from the erro-
neous state to a normal state.

Similar to other methods of fault tolerance, the environmental-
diversity-based techniques also contain the above three phases,
which are further described in Section III. To better illustrate the
specific characteristics of environmental-diversity-based tech-
niques, we briefly introduce traditional fault tolerance tech-
niques, namely design diversity and data diversity, in the fol-
lowing.

In design diversity [8], multiple diverse versions of the target
software are separately developed and deployed in redundant
configurations. The multiple versions have the same require-
ments and thereby are expected to provide the same function-
ality, but they are usually developed by different teams, hoping
that the faults introduced by one team will not be the same as
those introduced by other teams. When a failure is detected,
the software could be recovered by failing over to the other
versions (or voting on the results from multiple versions). Since
it is clearly time consuming and costly to develop a complex
software system, let alone multiple versions, design diversity
is thereby not a cost-effective solution for dealing with failures
caused by Mandelbugs.

In data diversity [9], once a failure is detected, we need
to re-express the failure-causing input into another one and
re-execute the software. The newly generated output, if valid,
is transformed back into the originally expected output. Devel-
opment of the input and output re-expression algorithms is the
primary challenge of this technique. Since data diversity only
considers failure triggers related to program inputs and ignores
the effects of program environments, it is of limited value in
addressing failures caused by Mandelbugs.

The environmental diversity is proposed to mainly address
Mandelbugs-caused failures [3], [7]. An encountered failure
is recovered by re-executing the input data on the same or
other identical replicas of the software but executing in differ-
ent execution environments. Several different environmental-
diversity-based recovery methods have been proposed in the
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Fig. 1. Example of a system with K subentities and four types of recovery
methods.

literature, such as restart, reboot, reconfigure, and hot-fix [7],
[10]. The techniques can effectively mitigate the Mandelbug-
caused failures because the execution environment will change
after the recovery and the fault activation preconditions may not
be satisfied again. For example, for Bug #11805 described in the
previous section, a software failure is caused by temporary full
usage of the physical memory. As a result, rebooting the machine
could release and regain the memory and eventually recover
the system back to a normal state in a short time. As another
example, the failure caused by Bug #776706 of Chrome [17]
could be alleviated by reconfiguring the firmware or drivers since
it is caused by incompatibility issues.

All fault tolerance approaches make use of redundancy to re-
cover failures. Taking full advantage of the fact that the execution
environments can influence the failure manifestation processes
of Mandelbugs, environmental diversity can generate redun-
dancy in a shorter time and in more economical ways than do
design diversity and data diversity. However, it is also essential
to evaluate the effectiveness of environmental-diversity-based
techniques in terms of their effect on system availability, which
we approach in the following sections.

III. RECOVERY PROCESS DESCRIPTION

A. Problem Description

In this article, inspired by Trivedi et al. [10], [12], which pro-
posed systems equipped by four recovery methods, we consider
extending the analysis to systems equipped with a set ofM types
available recovery methods that can be deployed on different K
system subentities. The possible combinations of subentities and
recovery method types define the available recovery actions that
can be executed in the system to mitigate Mandelbug-caused
failures.

Fig. 1 shows an example of a system with K subenti-
ties denoted as Sub = {sub1, sub2, . . . , subK} and a set with
M = 4 types of recovery methods: restart, reboot, reconfig-
ure, and hot-fix. Let (a) Rs = {restart1, restart2, . . . , restartK}
denote the set of restarts, and restarti denote restart-
ing subi; (b) Rb = {reboot1, reboot2, . . . , rebootK} denote
the set of reboots, and rebooti denote rebooting subi;

(c) Rc = {reconf1, reconf2, . . . , reconfK} denote the set of re-
configures, and reconfi denote reconfiguring subi; and (d) Rh =
{hotfix1, hotfix2, . . . , hotfixK} denote the set of hot-fixes, and
hotfixi denote fixing subi online. It should be noted that not
all types of recovery methods may be applicable to certain
subentities. For example, if subi is a procedure, rebooting it
is clearly not possible. Therefore, the set of available recovery
methods for the considered system would be a proper subset of
Rs ∪ Rb ∪ Rc ∪ Rh. Fig. 1 denotes available recovery types by
framing them with a solid-line rectangle.

In general, let SRM = {rr1, rr2, . . . , rrn} be the set of recov-
ery methods available for the system, a subset of all the deploy-
ments of the M types of recovery methods on the K subentities.
Consequently, each rri is the result of the application of a specific
type of recovery method to one of the system subentities. Once
a failure occurs, a straightforward strategy is to sequentially
apply all the methods in SRM for the failure mitigation. Let
s = 〈rr1, rr2, . . . , rrn〉 denote the chosen mitigation sequence,
where rri is an element of SRM and denotes the ith attempted
recovery method.

In this article, the quantitative analysis on the considered
system aims to answer the following question: What is the
system availability when the system is utilizing a sequence of
recovery methods s? Then, the answer to this question enables
us to address the next research question: What is the optimal
sequence s, i.e., the one that maximizes the system availability?
The search space can be extremely large since it corresponds to
the set of permutations of SRM. In the following, we first review
the related work and then describe our approach.

B. Related Work

The main objective of this work is to conduct a quantitative
analysis of the system availability and optimize it. We will use
a modeling approach to describe system recovery behaviors
when a sequence of recovery methods is applied to mitigate
Mandelbug-caused failures. Many studies have been published
in the literature presenting availability analysis methods for
systems equipped with software rejuvenation techniques [1],
which take actions before the manifestations of failures to pre-
vent them from occurring. For example, in [22]–[25], stochastic
reward nets models [26] have been applied to evaluate the
availability of systems whose time to failure and time to repair
can be adequately modeled as exponentially distributed random
variables. Continuous-time Markov chains (CTMCs) [27] have
been applied in [28] and [29] to model the behaviors of virtual
machines. However, we notice there are only a few studies
focused on analyzing the availability of systems equipped with
recovery methods that take actions after a Mandelbug-caused
failure occurs. To the best of our knowledge, the only relevant
ones are [12] and its extension [10]. Since software rejuvenation
and failure recovery are distinct techniques to increase system
availability, the system behaviors resulting from applying them
are very different. Therefore, it is infeasible to directly apply the
methods developed for the analysis of systems equipped with
software rejuvenation techniques to the problem of interest in
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Fig. 2. Flowchart of recovery after a failure for a system equipped with four
recovery methods arranged in a given order.

this article. Considering the relevance of [10] and [12] to our
work, we provide more details of their work in the following.

The authors in [10] considered two types of recovery strate-
gies: one whereby recovery methods are selected for application
according to the result of the bug-type diagnosis step, and
another one in which a fixed sequence of available recovery
methods is applied. Since we will be focusing on strategies
that do not depend on the diagnosis results, the first one is not
relevant to the analysis in this article and we shall consider just
the latter. Fig. 2 shows the flowchart of the recovery methods
employed sequentially to restore the system after the occurrence
of a failure. The recovery methods are arranged as follows:
restart is first applied, followed by reboot, reconfigure, hot-fix,
and human-fix. After the encountered failure is mitigated or
repaired, the system enters a normal state denoted as “System
OK.” Clearly, this is a special case of our more general setting.

In [10], two criteria are considered for arranging the recovery
methods in the sequence shown in Fig. 2. First, recovery methods
should be sorted in ascending order in expected execution time
[7]. Normally, restart is the fastest method, followed by reboot,
reconfigure, and hot-fix. Second, for the specific type of system
studied in [10], the dormant bugs can be classified into the
following four hierarchical categories.

i) Restart-Maskable-Mandelbug, which can be mitigated by
restart, reboot, reconfigure, or hot-fix.

ii) Reboot-Maskable-Mandelbug, which can be mitigated by
reboot, reconfigure, or hot-fix.

iii) Reconf-Maskable-Mandelbug, which can be mitigated by
reconfigure or hot-fix.

iv) Bohrbug and other types of Mandelbug, which can be
addressed by hot-fix or human-fix.

The sequence in Fig. 2 is thereby generated by taking full advan-
tage of the above hierarchical relationships among categories.

While the approach proposed in [10] can be applied to systems
with a fixed sequence of specific recovery methods, it cannot
handle the following situations.
� Systems can apply recovery techniques on their subenti-

ties in a flexible way; therefore the number of recovery
techniques may not be fixed. We consider more general

scenarios that could have multiple restarts, reboots, recon-
figures, and hot-fixes deployed on different subentities as
illustrated in Fig. 1. Here, we are thereby not restricting
ourselves to systems with a designated number of recovery
methods, which is the assumption in [10].

� The system mean time to failures (MTTFs) after the failure
successfully being mitigated by distinct recovery methods
can be different. According to the results proposed in [6], it
is observed that recovery methods may have an impact on
the MTTF. For example, Qiu et al. [6] find that the average
time to failure of a system after being reconfigured is sig-
nificantly larger than that of a system after being restarted.
This phenomenon is understandable because reconfiguring
a system involves not only restarting that system but also
carrying out additional operations.

� The recovery methods can be arranged in multiple reason-
able sequences. For example, depending on the specific
environment being reconfigured after the failure and the
faults that could trigger it, a practitioner can give reconfig-
ure a higher priority over reboot. However, a sequence in
which reboot is attempted prior to reconfigure could also
be reasonable. It must be noticed that the two sequences
could result in very different system availabilities, as we
explain in the following.

The above scenarios require a more general approach to
model system recovery behaviors, which we will introduce in
the following.

C. Our Approach

We first describe the recovery process model proposed for the
system considered in this article; this model is described in the
form of a flowchart in Fig. 3. As illustrated in this figure, once
a failure is detected, the system will attempt all its available
recovery methods one after another. If the failure cannot be
mitigated by any of the recovery methods, then a human-fix
or other back-up methods will be applied to fix the bug. We say
that a Mandelbug is masked by a recovery technique if the failure
caused by that bug does not reoccur with a high probability after
the application of that recovery method. The failure due to that
bug is then said to be mitigated.

The first essential aspect of our model is that it considers the
impact of applying the available recovery methods in different
possible sequences. From the flowchart shown in Fig. 3, it is
clear that whether a bug can be masked by a recovery method
depends not only on the method itself but also on its predecessor
recovery methods in the sequence of recovery methods applied.
According to Fig. 3, the failure due to a bug will be mitigated
by rri when the bug is maskable by rri and it is not maskable by
(i− 1) predecessors of rri. Let Ci denote the set of bugs that
are actually being masked by rri but that cannot be masked by
any of the recovery methods applied prior to it, and Ai denote
the set of bugs that can be masked by rri. Then, the following
relationship between Ci and the Ai holds:

Ci = Ai \ {A1 ∪A2 ∪ . . . ∪Ai−1} .
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Fig. 3. Flowchart of a system with n recovery methods that may result in distinct system MTTFs.

For instance, if a system only uses two recovery methods x and
y, and the sequence s = 〈x, y〉 is utilized, we have C1 = Ax

and C2 = Ax −Ay . By contrast, if the sequence s = 〈y, x〉 is
utilized, we have C1 = Ay and C2 = Ay −Ax. In the general
case, to take into consideration the influences of the particular
sequence of recovery methods on the system availability, we will
leverage the concept of conditional probability for the analysis
in Section IV.

Another important aspect illustrated by the flowchart is that
we associate each recovery method rri with a particular value of
the system MTTF. We consider that distinct recovery methods
may result in different system MTTFs because each of them
will change the environment of the system to a certain extent,
as explained in Section III-B. To emphasize this point, we detail
the working state of the system into n+ 1 substates, by which
a substate “MTTF i” denotes the up state of the system after
executing the recovery method rri, and “MTTF H” denotes the
up state when the system is repaired by the human-fix.

Comparing the flowcharts in Figs. 2 and 3, it is clear that the
one shown in Fig. 2 can be treated as a special case of Fig. 3 if
we assign restart to rr1, reboot to rr2, reconfigure to rr3, hot-fix
to rr4, and set all “MTTF i” equal to “MTTF H.” Based on the
above discussions about the system recovery behavior, in the
following section, we build an analytic model to carry out a
quantitative analysis for the system availability.

IV. SYSTEM AVAILABILITY MODELING AND ANALYSIS

A. SMP Formulation

In this section, we propose an SMP model to represent and
analyze the time-dependent evolution of the state of the system.
Our choice of an SMP stems from the following two assumptions
that can be justifiably made based on the behaviors of the system.

1) The distribution of the time spent in each one of the steps of
the recovery process depicted in Fig. 3 can follow a general
distribution. Assuming all sojourn time to be exponentially
distributed would make the model much easier to treat
analytically. However, the recovery actions are different
by their very nature, and using the same constant shape
distribution to model all of them would be very restrictive
and likely to result in a poorly representative model.

2) The time spent in each step of the flowchart shown in
Fig. 3 is independent of the time the system spent in the
previously occupied states. We can reasonably assume that
executing a specific recovery step requires a time that only
depends on the actions executed in the recovery process
itself. Furthermore, since no event-time distributions are
competing, we can conclude that the system state evolu-
tion follows an SMP behavior rather than a more complex
one, such as a Markov regenerative process [13].

Based on these assumptions, we resort to an SMP model
[13] to represent how the system alternates between up states
and recovery stages. Our model of the system is a stochastic
process {Z(t) | t ≥ 0}, where Z(t) is the state of the system
at time t, t ≥ 0. The state space SZ of this stochastic process
is the set SZ = {DD , UH , DH} ∪ {Ui, Di|i = 1, 2, . . . , n}. A
description of what each state in the SMP model represents is
given in Table I. The last column of the table introduces the
notation for the cumulative distribution function (CDF) of the
sojourn time that the stochastic process spends per visit to each
of its states.

The state-transition diagram of the SMP is shown in Fig. 4.
Notice that the diagram is very similar to the flowchart in Fig. 3.
We can imagine the evolution of the system from state DD
as a sequence of transitions that transfer the control from one
recovery method to another until that failure is successfully
mitigated. Each state in the diagram is labeled with the CDF of
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TABLE I
STATES OF THE SMP MODEL

Fig. 4. State-transition diagram for the model of a system with a sequence of
n of recovery methods.

the state sojourn time, whose notation is introduced in the last
column of Table I. Each transition in the diagram is annotated
with the event that in the modeled system causes the state
change. We assume that the state sojourn time as well as the
events that determine the choice of the next state to transition
are independent of time and, hence, the SMP we define is time
homogeneous.

Our metric for the quality of a particular sequencing of recov-
ery actions is the SSA of the system. We notice that our SMP
model is guaranteed to have a steady-state probability vector,
as it has a finite state space and each state is positive recurrent
[13], [27], [30], i.e., it has a finite expected return time for any
meaningful choice of the holding time distributions.

Obtaining the SSA metric requires evaluating the steady-state
probability vector and summing up the probabilities of all the
states in which the system is up. In our case, if �π denotes the
(2n+3)-dimensional vector of the steady-state probabilities, we
can compute SSA as follows:

SSA = πUH
+

n∑
i=1

πUi
. (1)

We will analytically compute the steady-state probability
vector for the SMP shortly by using a standard approach that
passes through the embedded discrete-time Markov chain of

the process. However, before that, we will utilize the notion of
imperfect coverage for the recovery methods we consider in the
studies of [13], [31], and [32].

B. Imperfect Coverage of Recovery Techniques

We admit the possibility that a given recovery method may
not be able to make the environment diverse enough so that
the fault is not masked by that step. We define the coverage of a
recovery method to be the probability that an encountered failure
can be mitigated by its actions. For each rri in the sequence s,
ci will denote the conditional probability that the application
of rri in the sequence s system will bring the system to a state
where the Mandelbug will not be reactivated. We assume that
with probability 1 the human intervention will bring the system
to a state in which the Mandelbug that caused the failure will
be not activated. For the sake of a simpler notation, we denote
by ci the complementary probability 1− ci, i.e., the conditional
probability that rr i fails to bring the state of the system to one
where operations can resume (i.e., the Mandelbug is still active).
The latter is known as imperfect coverage [13], [31], [32].

Following the symbol definition used in the last section, we
let Ai denote the set of bugs that can be masked by the execution
of rri, 1 ≤ i ≤ n. Then, the coverage ci is the probability that
the encountered failure was caused by a bug in Ai but not in
A1 ∪A2 · · · ∪Ai−1, which we can be written as follows:

ci = P
(
Ai|A1A2 · · ·Ai−1

)
=

P
(
Ai ∩

⋃i−1
j=1 Aj

)
P
(⋃i−1

j=1 Aj

) . (2)

whereP (X) denotes the probability that the encountered failure
belongs to set X .

We notice that previous studies published in the literature
commonly assumed the coverage of recovery method to have
the nature of an unconditional probability [13], [31], [32]. Here,
we introduce a more general approach to calculate the coverage
as given by (2), recognizing the dependence of the coverage of
recovery methods on the specific order of their application.

If the intersection of any two setsAi andAj is empty, i.e., each
recovery method in the sequence can mask a set of Mandelbugs
that cannot be masked by any other methods, the conditional
probability (2) simplifies to become

ci = P
(
Ai|A1 A2 · · ·Ai−1

)
= P (Ai) . (3)

Therefore, in this independence scenario, the values of coverage
no longer depend on the sequence. Their evaluation can be
carried out by simpler experiments that aim at determining the
individual capability of each recovery technique in masking
Mandelbugs.

In the case when the recovery capabilities of recovery meth-
ods are in a hierarchical relation (such as the four recovery
methods described in Section III-B), it means that Ai ⊂ Ai+1,
i = 1, 2, . . . , n− 1, and the expression in (2) simplifies as fol-
lows:

ci = P
(
Ai|A1 A2 · · ·Ai−1

)
= P

(
Ai|Ai−1

)
. (4)
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Since AiAi−1 = Ai \Ai−1 and we are guaranteed that the un-
conditional coverage factors will be such thatP (Ai−1) < P (Ai)
for i = 2, 3, . . . , n, we can rewrite (4) as follows:

ci =
P (Ai)− P (Ai−1)

1− P (Ai−1)
. (5)

Notice that a hierarchical arrangement is compliant with the
rationale of an ordered deployment of recovery methods. When-
ever the sequence s of recovery methods has such a property, we
can apply the formula in (5) to estimate the coverage factors ci.

Otherwise, the calculations of the ci should follow a two-step
procedure. First, draw the Venn diagram of the set of maskable
bugs for all recovery methods and the human-fix method. Then,
calculate ci based on (2) and the estimation of each set size.
For example, suppose a system is equipped with a sequence of
recovery methods s = 〈rr1, rr2, rr3, rr4〉. Let us define

pi = P

⎛
⎝Ai ∩

i−1⋃
j=1

Aj

⎞
⎠ , i = 1, 2, . . . , 5. (6)

Since we assume that all bugs can be recovered by a human-fix,
A5 is thereby the universal set, P (A5) = 1, and p1 + p2 + p3 +
p4 + p5 = 1. Following (2), we have

c1 = P (A1) = p1

c2 = P
(
A2|A1

)
=

P
(
A1A2

)
P
(
A1

) =
p2

1− p1

c3 = P
(
A3|A1 A2

)
=

P
(
A1 A2A3

)
P
(
A1 A2

)
=

P
(
A1 A2A3

)
P
(
A1

)− P
(
A1A2

) =
p3

1− p1 − p2

c4 = P
(
A4|A1 A2 A3

)
=

P
(
A1 A2 A3A4

)
P
(
A1 A2 A3

)
=

P
(
A1 A2 A3A4

)
P
(
A1 A2

)− P
(
A1 A2A3

) =
p4

1− p1 − p2 − p3
. (7)

In real applications, the values of pi can be estimated by the
proportion of bugs that fall into the corresponding set; see, for
instance, the related empirical studies [2], [3], and [33] on this
topic. However, here we will not touch upon the general problem
of estimating the values of coverage but leave the topic as a future
work.

C. System SSA Solution

In this section, we obtain an explicit analytical expression of
SSA, by determining the steady-state probabilities of the SMP
states and replacing them in (1). Informally, we consider the
sequence of states of the SMP process at the epochs of state
transitions. Such a sequence satisfies the Markov property and
indeed forms a discrete-time Markov chain, from whose steady-
state analysis, we can obtain the steady-state probability vector
of the SMP [13].

Fig. 5. State-transition diagram for the EDTMC of the SMP model.

Formally, let t0 = 0, t1, t2, . . . , tn denote the time epochs at
which the SMP {Z(t) | t ≥ 0} undergoes a state transition. The
sequence of states {Xn = Z(tn) |n ≥ 0} forms an embedded
discrete-time Markov chain (EDTMC, hereafter), whose state
space SX is the same as SZ , the state space of the SMP.

Based on our assumption of time homogeneity for the SMP,
we are guaranteed that the EDTMC satisfies the homogeneity
property as well and, hence, it is fully characterized by its
one-step transition probability matrix P = [pj,k]. Note that the
assumption of the Markov chain requires that

∑
k pj,k = 1. The

nonzero entries of the transition probability matrix P of the
EDTMC are defined as follows:

pj,k =

⎧⎪⎪⎨
⎪⎪⎩

1 j = DD and k = D1

ci j = Di and k = Ui, i ∈ I
ci j = Di and k = Di+1, i ∈ I
1 j = Ui and k = DD , i ∈ I

(8)

where I is defined as the set I = {1, 2, . . . , n} ∪ {H}. The
state-transition diagram of the EDTMC is isomorphic to that
of the SMP, and it is shown in Fig. 5. Since it is a finite-state
aperiodic discrete-time Markov chain, it has a unique steady-
state probability vector [32].

Let us denote by �ν the vector of steady-state proba-
bilities of the EDTMC {Xn |n ≥ 0}, �ν = [νDD , νD1

, νU1
,

νD2
, νU2

, . . . , νDn
, νUn

, νDH
, νUH

]. According to [13], �ν is the
solution of the following set of linear equations:

�ν = �ν · P
subject to �ν · �e = 1 (9)

where P is the transition probability matrix defined in (8), and �e
is a properly sized column vector with all entries equal to 1. By
first assuming that νDD is known, using successive substitutions
[13] to solve the system of linear equations, we obtain the
following solution for the entries of vector �ν:

νDi
= νDD · γi, i = 1, 2, . . . , n

νDH
= νDD · γn+1

νUi
= νDi

· ci, i = 1, 2, . . . , n

νUH
= νDH

(10)

where, for the sake of a simpler notation, we defined γi =∏i−1
j=1 cj for i ≥ 2 and γ1 = 1. From the above equations, by
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using the normalizing condition in (9), we obtain the following
expression for νDD :

νDD =
1

2 +
∑n+1

i=1 γi
. (11)

As described in [13], from the steady-state solution �ν of the
EDTMC, we can obtain the vector �π of the SMP steady-state
probabilities. Let us denote by hi the average holding time (or
sojourn time)2 of state i of the SMP, where index i takes values
in the state space SZ . We can obtain the entries of vector �π as
follows:

πi =
νi · hi∑

j∈SZ
νj · hj

, i ∈ SZ . (12)

Then, using (12) and substituting into (1), we obtain the
following expression for the SSA(s) of the system:

SSA(s) =
νDD · γn+1 · hUF

Δ
+

n∑
i=1

νDD · γi · ci · hUi

Δ

=
νDD

Δ

(
γn+1 · hUF

+

n∑
i=1

γi · ci · hUi

)
(13)

whereΔ is the SMP steady-state normalizing constant [13] such
that

Δ = νDD · hDD +
n∑

i=1

νDD · γi · hDi
+ νDD · γn+1 · hDH

+

n∑
i+1

νDD · γi · ci · hUi
+ νDD · γn+1 · hUH

.

With some algebraic manipulations, we can simplify (13) and
obtain the following expression for SSA(s) of the system:

SSA(s) =

(
1 +

hDD +
∑n

i=1 γi · hDi
+ γn+1 · hDH∑n

i=1 γi · ci · hUi
+ γn+1 · hUH

)−1

.

(14)
Notice that the expression in (14) for SSA(s) is in the standard

form given as

SSA(s) =

(
1 +

MTTR(s)
MTTF(s)

)−1

(15)

where MTTR(s) denotes the system’s overall mean time to
repair (or recovery) and MTTF(s) denotes the system’s overall
MTTF.

Equation (14) provides a formula for the system availability
as a function of the characteristics of the recovery methods,
i.e., the expected duration of their execution, the expected up-
time the system experiences after their successful completion,
and the coverage each of them provides against failures. Notice
that the specific sequencing of the recovery methods is taken
into account in (14) by the coefficients γi.

To verify our solution, we have compared the analytic avail-
ability formula obtained in [10] and the one obtained in this

2If Hi(t) denotes the CDF of the sojourn time in state i, then the expected
sojourn time is given by hi =

∫ ∞
0

(1−Hi(u))du.

article. We found that the two formulas provide the same result
under the settings given in [10]. The detailed comparison process
is presented in the appendix. We further validate the solution by
the numerical analyses in Section VI.

V. OPTIMAL RECOVERY SEQUENCE ANALYSIS

In addition to computing the availability for a system with a
given sequence of recovery methods, it is important to determine
the optimal sequence that can result in the largest system avail-
ability for a chosen set of recovery methods. Recall that, we let
SRM = {rr1, rr2, . . . , rrn} denote the set of recovery methods
available in the system. Each permutation of the set I of indexes
{1, 2, . . . , n} defines a possible sequence s of recovery methods
to be applied for failure mitigation. Let us denote byP (SRM) the
set of all n! possible permutations of SRM. With this notation,
the availability optimization problem can be formally described
as the one that finds a sequence s∗ such that

SSA(s∗) = maxs∈P (SRM)SSA(s).

Owing to (15), we can restate the maximization problem as the
following minimization problem:

mins∈P (SRM)

{
MTTR(s)
MTTF(s)

}
. (16)

This sequence optimization problem is not trivial at all. The
major source of its complexity is the dependence of coverage
values on the sequence of recovery methods. Indeed, by its very
definition, the value of ci depends on which recovery methods
are executed prior to rri in the sequence. To approach the problem
of identifying optimal sequences, let us first assume that the
recovery methods chosen are such that their order of execution
does not affect the coverage probabilities. An example of such
a system is the one consisting of a set of modules such that each
module is equipped with one recovery method for dealing with
a specific set of failures. For such a system, the set of failures
that can be masked by one recovery method is disjoint from the
set of any other one.

With this assumption, each recovery method rri is quanti-
tatively characterized by the tuple (ci, hi

D, hi
U ), where ci is

the coverage of rri, hi
D the rri mean execution time, and hi

U

the system MTTF after successful failure mitigation by rri,
respectively. When using the notation with subscripts in s =
〈rr1, rr2, . . . , rrn〉, by rri we mean the ith recovery method in
the sequence, which does not necessarily correspond to rri, the
ith recovery method in set SRM. To maintain a correspondence
between the recovery methods in a sequence s and those in the
set SRM, we introduce an index mapping function δ : I → I
such that, for each index i of rri in a sequence s, δ returns
the corresponding index j of rrj in SRM. Thus, for instance,
hDδ(i)

and cδ(i) would be the expected execution time and the
coverage of the ith recovery method in the sequence, respec-
tively. If δ(i) = j, i.e., the ith method in the sequence is rrj ,
then hDδ(i)

= hj
D and cδ(i) = cj .

In the following, we present three scenarios for which the
optimal recovery sequence s∗ can be found by a simple ordering
of the tuples characterizing the recovery methods.
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A. Ordering Based on Execution Time

We consider in this scenario a set of recovery methods that all
have the same cis and hi

U s. The following proposition provides
a simple algorithmic approach to solve the SSA(s) optimization
problem.

Proposition 1: If the recovery methods in SRM are such that
the following statements hold:

1) hi
U = hU ;

2) ci = c;
for i = 1, 2, . . . , n, then the optimal sequence s∗ =
〈rr1, rr2, . . . , rrn〉 is such that hDδ(i)

≤ hDδ(i+1)
, i =

1, 2, . . . , n− 1.
Proof: Owing to the assumptions in 1) and 2) above, we have

hUi
= hU and ci = c, respectively. Then, the expression to be

minimized in (16) can be rewritten as follows:

hDD +
∑n

i=1(1− c)i−1 · hDδ(i)
+ (1− c)n · hDH∑n

i=1(1− c)i−1 · c · hU + (1− c)n · hUH

. (17)

Since the denominator of the previous expression does not
depend on the chosen order of the sequence, then optimizing
SSA(s) of the system is equivalent to minimizing the numerator.
Furthermore, hDD and hDH

are both constants that are added
to the numerator for each sequence, and therefore our problem
becomes that of finding

mins∈P (SRM)

n∑
i=1

(1− c)i−1 · hDδ(i)
.

Because the coefficients (1− c)i−1 in the linear combination
above are decreasing with i, the minimum value will be achieved
by a sequence in which hDδ(i)

s are arranged in a nondecreasing
order, thus concluding the proof. �

Proposition 1 shows that when both the coverage and the
system MTTF after successful failure mitigation are the same
among all recovery methods in SRM, a recovery sequence s
that gives higher priority to recovery methods with the shorter
expected execution time will result in the best SSA(s).

B. Ordering Based on Expected Time to Failure

We consider here the case where the expected execution time
and the coverage values of recovery methods are the same.

Proposition 2: If the recovery methods in SRM are such that
the following statements hold:

1) hi
D = hD;

2) ci = c;
for i = 1, 2, . . . , n, then the optimal sequence s∗ =
〈rr1, rr2, . . . , rrn〉 is the one such that hUδ(i)

≥ hUδ(i+1)
,

for i = 1, 2, . . . , n− 1.
Proof: Owing to assumptions 1) and 2), we have hDi

= hD

and ci = c, respectively. Then, the expression in (16) can be
rewritten as follows:

hDD +
∑n

i=1(1− c)i−1 · hD + (1− c)n · hDH∑n
i=1(1− c)i−1 · c · hUδ(i)

+ (1− c)n · hUH

. (18)

Since the numerator of the previous expression does not depend
on the chosen order of the sequence, then optimizing SSA(s) of

the system is equivalent to maximizing the denominator. More-
over, since hUH

is a constant time included for each sequence,
we can restate the maximization problem as follows:

maxs∈P (SRM)

n∑
i=1

(1− c)i−1 · c · hUδ(i)
.

Following the same argument we used when proving the previ-
ous proposition, the optimal result is achieved by the sequences
in which hUδ(i)

s are arranged in a nonincreasing order, thus
completing the proof. �

Proposition 2 shows that when both the value of coverage and
the expected execution time are the same among all recovery
methods in SRM, a recovery sequence that gives higher priority
to the recovery method with larger system MTTF after success-
ful failure mitigation will result in the best SSA(s).

C. Ordering Based on Coverage

We consider in this scenario a set of recovery methods that all
have the same hi

Ds and hi
U s. The following proposition provides

a simple algorithmic approach to solve the SSA(s) optimization
problem.

Proposition 3: If the recovery methods in SRM are such that
the following statements hold:

1) hi
D = hD;

2) hi
U = hU ;

for i = 1, 2, . . . , n, then the optimal sequence s∗ =
〈 rr1, rr2, . . . , rrn〉 is such that cδ(i) ≥ cδ(i+1), i =
1, 2, . . . , n− 1.

Proof: Owing to the assumptions in 1) and 2), we can rewrite
the expression in (16) as follows:

hDD + hD + hD

n∑
i=1

i−1∏
j=2

cδ(j) +
n∏

j=1

cδ(j) · hDH∑n
i=1

∏i−1
j=1 cδ(j) · cδ(i) · hU +

∏n
i=1 cδ(i) · hUH

. (19)

Since the second term in the denominator in the above expression
can be written as follows:

n∏
i=1

cδ(i) · hUH
=

n∏
i=1

cδ(i) · hU +
n∏

i=1

cδ(i) · (hUH
− hU )

(20)
then, the denominator of (19) takes the following form:

hU

⎡
⎣ n∑

i=1

i−1∏
j=1

cδ(j) · cδ(i) +
n∏

i=1

cδ(i)

⎤
⎦+

n∏
i=1

cδ(i) · (hUH
− hU ).

(21)
We prove in the appendix (see Lemma 1) that the expression
within square brackets is equal to 1, thus (19) can be rewritten
as follows:

hDD + hD + hD

n∑
i=1

i−1∏
j=2

cδ(j) +
n∏

j=1

cδ(j) · hDH

hU +
n∏

j=1

cδ(j) (hUH
− hU )

. (22)

Since the denominator of the previous expression does not
depend on the chosen order of the sequence, then optimizing
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SSA(s) of the system is equivalent to minimizing the numerator.
Moreover, hDD, hD, and hDH

are constants, and therefore our
problem becomes that of finding

mins∈P (SRM)

n∑
i=1

i−1∏
j=2

cδ(j).

Let us denote by T (s) = cδ(1) + cδ(1) · cδ(2) + · · ·+ cδ(1) ·
cδ(2) · . . . · cδ(n−1) the function of the coverage factors to be
minimized. We prove by contradiction that the optimal se-
quences must be such that cδ(i) ≥ cδ(i+1), i = 1, 2, . . . , n− 1.
Let us assume that there exists an index k, 1 ≤ k < n, for which
cδ(k) < cδ(k+1), i.e., the condition stated in the proposition is
not satisfied by the optimal sequence s∗. Then, we can construct
another sequence s′ that has the same order of recovery methods
as s∗ except for the kth and (k + 1)th items, which are swapped.
Then, it is easy to check that

T (s∗)− T (s′) = cδ(1) · cδ(2) · . . . · cδ(k−1)

(
cδ(k) − cδ(k+1)

)
because all the other terms in the difference cancel out. Since
we assumed cδ(k) < cδ(k+1), then we have cδ(k) > cδ(k+1);
therefore, T (s∗)− T (s′) > 0, which means s∗ is not optimal,
thus generating a contradiction and concluding the proof. �

Proposition 3 shows that when both the expected execution
time and the system MTTF after successful failure mitigation
are the same among all recovery methods in SRM, a recovery
sequence s that gives higher priority to recovery methods with
larger values of coverage will result in the best SSA(s).

Propositions 1–3 do not cover all the situations in optimizing
the sequence of a chosen set of recovery methods. However,
their preconditions can be easily checked and, when applicable,
they can effectively reduce the search time to find the optimal
sequence.

VI. NUMERICAL ANALYSES

In this section, we explore the application of the analytic
results obtained in Sections IV and V to a set of scenarios that
can characterize several interesting cases of software systems.
Moreover, we realize a validation step for the model by checking
that its results respect a set of partial ordering properties that
can be stated for the analyzed cases of systems. Notice that
even though the expression for SSA(s) in (14) appears to be a
closed formula, it in fact depends on the coverage parameters
cis, whose values may vary with the chosen order of recovery
methods in the sequence. In the analysis presented in this section,
we have the same assumption made for Section V by assuming
that the recovery methods chosen are such that their order of
execution does not affect the coverage probabilities and, hence,
the coverage parameters of recovery methods remain constant
in the considered cases. To find the optimal sequence, we shall
be using a combination of exhaustive search and the sorting
approach. Our analysis process encompasses the following three
steps.

Setup. To identify key system characteristics to be considered
as independent variables in the analysis of the response, i.e.,
system availability. These characterizing traits are called

factors.3 We shall also be defining for each factor a set of levels
that correspond to specific conditions that can be realistically
found in a software system. The possible assignments of levels to
the factors define a sample of interesting system configurations
for analysis. Each assignment (called treatment) is representative
of the execution environment and recovery characteristics of a
class of availability-critical software systems.

Evaluation. To determine the optimal sequencing of recov-
ery methods for each treatment and the corresponding system
availability, by using exhaustive search and the results proved
by Propositions 1–3, when possible.

Validation. To test to what extent the results obtained with our
modeling approach respect a set of qualitative properties that can
be stated on the availability of the system.

In the following, we provide details about the process outlined
above.

A. Setup

Since the response is SSA(s), we identify factors by screening
those aspects of the system that can have an effect on the param-
eters cis, hDi

s, and hUi
s appearing in (14) that can change the

magnitude of the parameters or affect their relative differences.
Let us first consider the coverage parameters cis. Since the

recovery techniques in SRM are meant to address Mandelbug-
caused failures, we expect the proportion of this bug type to
be an important factor. Failures caused by Bohrbugs cannot
be mitigated by methods in SRM, so the magnitude of the
coverage parameters is affected by the Mandelbug proportion.
According to [2], [10], and [33], the Mandelbug proportion is
highly dependent on the system complexity. A system can be
coarsely classified as having a low, medium, or high complexity,
and the higher the complexity of the system, the larger the
proportion of Mandelbugs. Accordingly, we classify the factor
of the Mandelbug proportion (MP, hereafter) into three levels:
low, medium, and high levels. The variability of the coverage of
recovery methods, i.e., the difference between the magnitudes
of the ci parameters, will be influenced by the nature of the
recovery method itself and the architecture of the system. For
instance, if SRM consisted of n recovery methods, each one
of type restart, where each restart is to be applied to one of
the n independent subsystems of a large modular system, then
we expect that the coverage parameters would be quite similar
in magnitude, i.e., there would be reduced relative differences
between them. In contrast, if restart, reconfigure, and hot-fix
recovery methods were considered, or if they were applied to
subsystems of different scales in the system, then the values of
coverage would be very different. Since there is very limited
experimental data to rely upon and we would like to preserve
generality, we introduce in our analysis an abstract factor called
coverage relationship (CR, hereafter), for which we design two
levels: similar level, when the coverage of recovery methods
have (almost) the same magnitudes, and escalated level, in
which the coverage of recovery methods take values that differ
significantly.

3We borrow the terminology used here from the design of experiments branch
of statistics; see, for instance [34].
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TABLE II
EXPERIMENTAL PLAN

Regarding the parameters hDi
s and hUi

s, we take the same
pragmatic approach as above by introducing two factors, called
MTTR relationship (MRR, hereafter) and MTTF relationship
(MFR, hereafter), which are applied to characterize the influence
of the type of recovery methods and the architecture of the
system on the variability of the values of parameters hDi

and
hUi

, i = 1, 2, . . . , n, respectively. For each of these two last
factors, we shall consider similar and escalated levels, whose
meanings are the same as that for the CR factor.

By considering the four factors and their levels, we design the
factorial experimental plan shown in Table II, which consists
of 24 treatments corresponding to the same number of software
system types. For each treatment, we analyze three samples, the
numbers of recovery methods of which are 3, 5, and 7. Thus,
72 (24× 3) samples are evaluated in total. For each sample,
to calculate SSA(s), the following settings of parameters are
considered.

1) System-Level Parameters: The values of the following
parameters are assigned based on studies in the literature when
possible and from reasonable guesses otherwise:
� hDD = 5 min, referring to the work in [10];
� hDH

= 720 min, i.e., the average human-fix duration is
24 h;

� hUH
= 43 200 min, which corresponds to a rate of one

failure per month.
In our numerical analyses, we only consider fixed values for the
above three parameters, without any variability, because their

magnitudes will not affect the results of the optimal sequence of
available recovery methods.

2) Recovery Method Parameters: The three levels of the CR
factor correspond to the following ranges for the probability
P (A), as introduced in Section IV-B.
� A low level is characteristic of systems for which approxi-

mately 5%–8% of the bugs are Mandelbugs. For example,
for the Apache AXIS, approximately 7.5% of the bugs are
Mandelbugs.

� A medium level is for systems whose proportion of Man-
delbugs is in the interval 0.2 and 0.32.

� A high level is for quite complex software systems, such
as the Linux OS, for which approximately half of issues
are classified as Mandelbugs. The range we assume here is
0.5–0.8.

The values used above are found in the results of the experi-
mental work [10], [33]. The proportion of Mandelbugs directly
affects the coverage of recovery methods, and the impact de-
pends on the level of the CR factor as follows.
� Similar. We set ci = c/n, 1 ≤ i ≤ n. Thus, low-, medium-,

and high-level treatments are c = 0.05, c = 0.2, and c =
0.5, respectively, and n is the number of recovery methods.

� Escalated. We set c1 = c/n, where c and n are the same
as the ones in the case above, and we let ci+1 = ci + α · c,
1 ≤ i < n, and α = 0.02.

Regarding the settings of the mean time to recovery, depend-
ing on the level of the MRR factor we set the following.
� Similar.hi

D = hD, 1 ≤ i ≤ n, withhD equal to 5 min [10].
� Escalated. h1

D = hD and hi+1
D = hi

D + δ, 1 ≤ i < n,
where δ = 20.

Regarding the settings of the MTTF, depending on the level
of the MFR factor we set the following.
� Similar. hi

U = hUH
, 1 ≤ i ≤ n.

� Escalated. h1
U = hUH

, and hi+1
U = hi

U + β · hUH
, 1 ≤

i < n, where β = 1.5.

B. Evaluation

To support the identification of the optimal sequence of recov-
ery methods, we developed an open-source tool, called optimal
environmental diversity-based fault tolerance analysis software
(OPENS). OPENS is developed in Python, and it is endowed
with a graphical user interface that allows setting the values of
parameters related to the system and recovery methods. Then,
OPENS finds the sequence s∗ of recovery methods that maxi-
mizes the steady availability SSA(s) by exhaustively searching
and evaluating through (14) all possible permutation sequences.
A screenshot of OPENS graphical user interface is shown in
Fig. 6. The source code and the documentation of OPENS can
be freely downloaded from Github.4

Table III shows the optimal sequences determined by OPENS
for each treatment listed in Table II. We can observe that for many
of the treatments, the optimal sequences can also be obtained
in a straightforward way by applying the results provided by
Propositions 1–3 introduced in the previous section. To be exact,

4[Online]. Available: https://github.com/Quentinbuaa/opens.
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TABLE III
OPTIMAL SEQUENCE AND THE APPLICABLE PROPOSITION FOR ALL TREATMENTS

Fig. 6. Screenshot of the interface of OPENS.

Table III pinpoints the applicable propositions for 12 out of 24
treatments, as shown in its last column. According to Table III, it
can be checked that the optimal sequences of recovery methods
determined by OPENS and by the propositions are identical.

Fig. 7 shows the system maximum SSA for the 24 treatments,
for each of the three cases when n = 3, n = 5, and n = 7.
The optimal sequences and the corresponding optimal values of
SSA(s) are obtained by running OPENS. In Fig. 7, the results
are shown with reference to the baseline system availability
(horizontal line in the chart) when no recovery methods apart

from the human-fix are applied. In this case, SSA(s) of the
system is given by

SSA(s) =
hUH

hUH
+ hDD + hDH

.

With the numerical values we assigned to the parameters,
SSA(s) corresponds to 0.967634. In Fig. 7, a bar beneath
the horizontal line of the baseline availability indicates that
utilizing additional recovery methods can only worsen system
availability. As can be observed, this occurs for most treatments
for which the MP = Low or MRR = Escalated. This is because
the application of recovery methods is ineffective in recovering
the majority of failures and, hence, their execution time will add
up to system downtime without a significant contribution to the
uptime of the system.

C. Validation

By considering the influence of the four factors on system
availability, we expect that when comparing the availability
of two treatments, the ordering relationships specified by the
following properties will hold. For the sake of a more compact
notation, we shall denote by MPi, CRi, MRRi, and MFRi the
levels of the four factors of a treatment Ti, and by SSAi(s

∗) its
optimal steady-state system availability.

Property 1: For any pair of treatments Ti and Tj that only
differ in the MP level, MPi ≥ MPj ⇒ SSAi(s

∗) ≥ SSAj(s
∗).

Here, MPi ≥ MPj denotes
∑n

k=1 c
k
i ≥ ∑n

k=1 c
k
j , where ckx

stands for the coverage of the kth available recovery methods of
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Fig. 7. System’s optimal availability [SSA(s∗)]] by 24 treatments when n = 3, n = 5, and n = 7.

Fig. 8. System’s optimal availability[SSA(s∗)] by groups of treatments which have only one different factor setting when n = 3.

Tx. This is expected because treatments with a higher MP stands
for a larger number of encountered failures can be recovered
without applying the human-fix method, therefore shortening
the expected overall downtime.

Property 2: For any pair of treatments Ti and Tj that only
differ in the CR level, CRi ≥ CRj ⇒ SSAi(s

∗) ≥ SSAj(s
∗).

CRi ≥ CRj denotes cki ≥ ckj , for all 1 ≤ k ≤ n. Then, the
ordering between SSA of Ti and Tj holds because for any kth
recovery method in Ti, it can deal with more types of failures
than the corresponding one in Tj .

Property 3: For any pair of treatments Ti and Tj that
only differ in the MRR factor, MRRi ≥ MRRj ⇒ SSAi(s

∗) ≤
SSAj(s

∗).
MRRi ≥ MRRj denotes hk

Di
≥ hk

Dj
, for all 1 ≤ k ≤ n, and

hk
Dx

stands for the mean time to recovery of the kth available
recovery method of Tx. Then, the ordering between the SSA
of Ti and Tj holds because for any 1 ≤ k ≤ n, the expected
execution time of the kth recovery method in Ti is smaller
than the corresponding one in Tj and, hence, Ti has reduced
downtime.

Property 4: For any pair of treatments Ti and Tj that
only differ in the MFR factor, MFRi ≥ MFRj ⇒ SSAi(s

∗) ≥
SSAj(s

∗).

MFRi ≥ MFRj denotes hk
Ui

≥ hk
Uj

, for all 1 ≤ k ≤ n, and

hk
Ux

stands for the system MTTF after a failure is successfully
mitigated by executing the kth available recovery method of
Tx. Then, the ordering between the SSA of Ti and Tj holds
because for any 1 ≤ k ≤ n, the expected time to failure of
the system after the successful application of the kth recovery
method inTi is larger than the one ofTj and, hence,Ti has longer
uptime.

These properties are used to validate the system availability
analytic approach we proposed. For this purpose, we verify
whether the availability optimization results obtained by the
model satisfy the four properties. We consider the case when
n = 3, and we report in Fig. 8(a)–(d), comparing SSA(s∗) by
grouping treatments that have only one different factor setting.
From the charts shown in Fig. 8, we can draw the following
conclusions.
� Property 1 is satisfied by the results, since according to

Fig. 8(a), the treatments with higher MPs have larger
SSA(s∗) than the corresponding treatments with lower
MPs.

� Property 2 is satisfied since according to Fig. 8(b), treat-
ments with CR = Escalated have larger values than their
corresponding treatments in the CR = Similar level.
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� Property 3 is satisfied since according to Fig. 8(c), the
treatments with the MRR = Escalated have smaller values
than their corresponding treatments in the MRR = Similar
level.

� Property 4 is satisfied according to Fig. 8(d), in which the
treatments with the MFR = Escalated have larger values
than the corresponding treatments in the MFR = Similar
level.

The treatments for n = 5 and n = 7 also satisfy those four
properties. Their analysis is not presented for the sake of brevity.

D. Discussion

In this section, we have evaluated the applicability of the
results we obtained in Sections IV and V. The four properties
we present for the optimal solutions can help understand the
influences that various parameters of the system and of the
recovery methods have on the system availability. For exam-
ple, Property 1 indicates that the deployment of the same set
of recovery methods will have different impacts on systems
with distinct proportions of Mandelbugs. Specifically, the larger
the proportion of Mandelbugs the system contains, the higher
the expected availability achieved by applying the same set of
recovery methods. Properties 2–4 can also be exploited to define
algorithmic approaches for guiding and enhancing the applica-
tions of environment-diversity-based fault tolerance techniques
in practice.

VII. CONCLUSION

In this article, we developed and studied an analytic model
to assess the availability of the systems that utilize a sequence
of environmental-diversity-based recovery methods. We made
three main contributions to this area: First, we proposed and
analyzed a recovery process model to describe the system re-
covery behaviors for any number of recovery methods, which
may have distinct characteristics and be arranged in arbitrary
orders. In our modeling approach, we formalized the recovery
process as an SMP and, hence, derived the system availability
formula. This result was validated by applying it to a special case
studied in a published work and by numerical analyses for more
general application scenarios. Second, this is the first attempt
to explore the problem of determining the optimal sequence
for a set of available recovery methods, and we proposed a set

of propositions to address this optimization problem. Finally,
we developed an open-source tool, namely OPENS, to assist
the system availability calculation and the determination of the
optimal sequence.

The effectiveness of our formal analysis results and the scope
of their application have been evaluated and illustrated through
the numerical analyses. The numerical analysis results show that
our model can help system architects and developers to decide
whether or not to deploy the environmental-diversity-based fault
tolerance techniques on their systems. If adopted, the proposed
optimal sequencing methods can help them to figure out the best
arrangement. In addition, the proposed properties can assist the
practitioners in improving the adopted recovery methods.

Future work in this area will be conducted to extend our
proposals to include the following two aspects. First, relaxing
the time-homogeneity assumption of the transition time among
the system states by considering the system’s MTTF could vary
with the system’s operational time. Second, developing a more
comprehensive strategy to optimize the sequence of recovery
methods to reduce the calculation overhead resulting from the
exhaustive search.

APPENDIX

In this appendix, we compare the system availability formulas
derived in this article (14) and the one in [10], which is given
by (23) as shown at the bottom of this page, to prove that they
provide the same result under equivalent system conditions.

The system studied in [10] can be treated as a special case
of the problem considered in this article, and the availability
formula for the system can be obtained by setting the variables
for (14) as follows:
� n = 4, since the system studied in [10] has four recovery

methods in a fixed sequence, that is s = 〈 restart, reboot,
reconfigure, hot-fix 〉.

� hUi
= hUH

(i = 1, 2, 3, 4) because the MTTF of the sys-
tem is assumed to be independent of the recovery method.

� p1 + p2 + p3 + p4 + p5 = 1, where p1, p2, p3, p4, and
p5, respectively, denote the probability that an en-
countered failure is caused by a Restart-Maskable-
Mandelbug, a Reboot-Maskable-Mandelbug, a Reconf-
Maskable-Mandelbug, a Hot-fix-Maskable-Mandelbug,
and a Bohrbug or a Mandelbug of other types, respectively.

MTTR

= p1 [E [D1ad] + (1− p1ad)E [D1md] + E [D1dg] + d11E [D1rs] + d12E [D1rb] + d13E [D1rc] + d14E [D1hf ]]

+ p2 [E [D2ad] + (1− p2ad)E [D2md] + E [D2dg] + d21 (E [D2rs] + E [D2rb]) + d22E [D2rb]

+ d23E [D2rc] + d24E [D2hf ]]

+ p3

[
E [D3ad] + (1− p3ad)E [D3md] + E [D3dg] + d31 (E [D3rs] + E [D3rb] + E [D3rc]) + d32 (E [D3rb]
+ E [D3rc]) + d33E [D3rc] + d34E [D3hf ]

]

+ p4

[
E [D4ad] + (1− p4ad)E [D4md] + E [D4dg] + d41 (E [D4rs] + E [D4rb] + E [D4rc] + E [D4hf ])
+d42 (E [D4rb] + E [D4rc] + E [D4hf ]) + d43 (E [D4rc] + E [D4hf ]) + d44E [D4hf ] + (1− p4hf )E [D4bf ] .

]
(23)
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TABLE IV
SYMBOL MAPPING RELATIONSHIP BETWEEN THE TWO STUDIES

� ci (i = 1, 2, 3, 4) can be obtained based on (5) as follows:

c1 = p1

c2 =
p2

1− p1

c3 =
p3

1− p1 − p2

c4 =
p4

1− p1 − p2 − p3
. (24)

For fairness of comparison and considering the assumptions in
this article, the variables in (23) should be configured as follows:
� E[Dad] = E[D1ad] = E[D2ad] = E[D3ad] = E[D4ad];
� E[Dmd] = E[D1md] = E[D2md] = E[D3md] =
E[D4md];

� E[Ddg] = E[D1dg] = E[D2dg] = E[D3dg] = E[D4dg];
� E[Drs] = E[D1rs] = E[D2rs] = E[D3rs] = E[D4rs];
� E[Drb] = E[D1rb] = E[D2rb] = E[D3rb] = E[D4rb];
� E[Drc] = E[D1rc] = E[D2rc] = E[D3rc] = E[D4rc];
� E[Dhf ] = E[D1hf ] = E[D2hf ] = E[D3hf ] = E[D4hf ];
� p1ad = p2ad = p3ad = p4ad = 1;
� d11 = 1, d12 = d13 = d14 = 0;
� d21 = 1, d22 = d23 = d24 = 0;
� d31 = 1, d32 = d33 = d34 = 0;
� d41 = 1, d42 = d43 = d44 = 0.
Due to the inconsistency of the symbols used in the two

studies, we substitute the symbols used in [10] with the ones
defined in this article, and the mapping relationship is shown by
Table IV.

For the clarity of description, let SSAa, SSAb, MTTFa,
MTTFb, MTTRa, and MTTRb denote the availability, MTTF,
and MTTR obtained in this article and [10], respectively.

Before we provide that the MTTF of our system and the one
in [10] are the same, we need to prove the following Lemma.

Lemma 1: The following equality holds:

n∑
i=1

⎛
⎝ci ·

i−1∏
j=1

ck

⎞
⎠+

n∏
i=1

ci = 1.

Proof: To see that this is true, it suffices to extract from the
summation the last term, and observe that

cn

n−1∏
j=1

ck +

n∏
i=1

ci = cn

n−1∏
j=1

ck + cn

n−1∏
i=1

ci =

n−1∏
i=1

ci.

This process can be repeated for the (n− 1)th term of the
summation and so on. After n− 1 steps, the expression reduces
to c1 + c1, which is obviously 1. �

We can now prove the following proposition.
Proposition 4: MTTF a = MTTF b.
Proof: Since hUH

= hUi
and n = 4, the denominator of (14)

can be rewritten as follows:

hUH

(
4∑

i=1

(
ci ·

i−1∏
k=1

ck

)
+

4∏
i=1

ci

)
.

Owing to Lemma 1, we conclude that MTTFa = hUH
. Because

the system’s MTTF is assumed to be constant in [10], we
immediately determine that MTTFb = hUH

. Therefore, we have
MTTFa = MTTFb and, hence, this concludes the proof. �

Next, we prove the following proposition.
Proposition 5: MTTRa = MTTRb.
Proof: According to (14), since p1 + p2 + p3 + p4 + p5 =

1, we can obtain

MTTRa

= hDD + hD1
+ hD2

(1− c1) + hD3
(1− c1) (1− c2)

+ hD4
(1− c1) (1− c2) (1− c3) + hDH

∏4

i=1
(1− ci)

= hDD + hD1
+ hD2

(1− p1)

+ hD3
(1− p1 − p2) + hD4

(1− p1 − p2 − p3)

+ hDH
(1− p1 − p2 − p3 − p4)

= hDD + hD1
+ hD2

(p2 + p3 + p4 + p5)

+ hD3
(p3 + p4 + p5) + hD4

(p4 + p5) + p5hDH
. (25)

After substituting the symbols of (23) with the ones used in
this article, we can obtain

MTTRb

= p1 (hDD + hD1
) + p2 (hDD + hD1

+ hD2
)

+ p3 (hDD + hD1
+ hD2

+ hD3
)

+ (p4 + p5)

(
hDD + hD1

+ hD2
+ hD3

+ hD4

+
p5

p4 + p5
hDH

)

= (p1 + p2 + p3 + p4 + p5) (hDD + hD1
)

+ (p2 + p3 + p4 + p5)hD2
+ (p3 + p4 + p5)hD3

+ (p4 + p5)hD4
+ p5hDH

= hDD + hD1
+ hD2

(p2 + p3 + p4 + p5)

+ hD3
(p3 + p4 + p5) + hD4

(p4 + p5) + p5hDH
. (26)

According to (25) and (26), we have MTTRa = MTTRb, thus
concluding the proof.

Since SSA = {1 + MTTR
MTTF }−1, with Propositions 4 and 5, we

have SSAa = SSAb.
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