
IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 1, MARCH 2020 3

Stress Testing With Influencing Factors to Accelerate
Data Race Software Failures

Kun Qiu , Zheng Zheng , Senior Member, IEEE, Kishor S. Trivedi, Life Fellow, IEEE, and Beibei Yin

Abstract—Software failures caused by data race bugs have al-
ways been major concerns in parallel and distributed systems,
despite significant efforts spent in software testing. Due to their
nondeterministic and hard-to-reproduce features, when evaluat-
ing systems’ operational reliability, a rather long period of experi-
mental execution time is expected to be spent on observing failures
caused by data race conditions. To address this problem, in this
paper, we make two contributions. First, this paper proposes stress
testing with influencing factors, in which the system runs under
certain workloads for a long time with controlled stress conditions
to accelerate the occurrence of data race failures. Second, it ex-
plores and formulates mathematical relationship models between
data races’ statistical characteristics of time to failure (TTF) or
mean TTF (MTTF) and the influencing factors. Such relationship
models are used for TTF/MTTF extrapolation under different op-
erational conditions and are essential to reduce systems’ reliability
evaluation time. The proposed method is empirically evaluated on
six applications suffering from failures caused by real-world data
race bugs. Through analysis of the experimental results, we obtain
several important findings: First, the reduction in the manifestation
time to data race failures achieved by controlling the influencing
factors is statistically significant. Second, Power model is the best-
fitting model of the relationship between the MTTF and the influ-
encing factors. Third, Power Weibull distribution is the best-fitting
probability distribution between the TTF and the influencing fac-
tors. Finally, the TTF/MTTF can be accurately estimated with the
approach proposed in this paper.

Index Terms—Data race software failure, influencing factors, re-
lationship model, software reliability, software stress testing, time
to failure/mean time to failure (TTF/MTTF) estimation.

NOMENCLATURE

Acronyms

AD Anderson–Daling test.
ALT/ADT Accelerated life/degradation testing.

Manuscript received February 8, 2018; revised June 19, 2018 and October
14, 2018; accepted January 4, 2019. Date of publication February 14, 2019;
date of current version March 2, 2020. This work was supported in part by
the National Natural Science Foundation of China under Grant 61772055 and
Grant 61872169, in part by the Equipment Preliminary R&D Project of China
under Grant 41402020102, and in part by the Technical Foundation Project
of Ministry of Industry and Information Technology of China under Grant
JSZL2016601B003. The work of K. S. Trivedi was supported in part by the US
NSF under Grant CNS-1523994 and in part by the IBM under a Faculty Grant.
Associate Editor: I. Gashi. (Corresponding author: Zheng Zheng.)

K. Qiu, Z. Zheng, and B. Yin are with the School of Automation Science and
Electrical Engineering, Beihang University, Beijing 100191, China (e-mail:,
qiukun@buaa.edu.cn; zhengz@buaa.edu.cn; beibeiyin@buaa.edu.cn).

K. S. Trivedi is with the Department of Electrical and Computer Engineering,
Duke University, Durham, NC 27708 USA (e-mail:,ktrivedi@duke.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TR.2019.2895052

cdf s-cumulative distribution function.
OS Operating system.
pdf s-probability density function.
ANOVA Analysis of variance.
CI s-confidence interval.
CL Concurrency level variable.
DOE Design of experiments.
GoF Goodness of fit.
ML Memory limitation variable.
mRSS Maximum resident set size.
MTTF Mean time to failure.
RAM Random access memory.
TTF Time to failure.

Notations

α Level of s-significance.
β or σ The shape parameter.
β0 The intercept parameter.
β1 The coefficient parameter.
η The scale parameter.
λ The rate parameter.
μ The location parameter.
exp(·) The exponential function.
f(·) The pdf function.
log(·) The natural logarithmic function.
S Explanatory variable.
T s-expectation of the response variable.

I. INTRODUCTION

DATA race software failures are increasingly becoming a
vital factor in determining the reliability of both small-

and large-scale systems. For a mission-critical system, such as
JPL/NASA space mission on-board system [1], data race fail-
ures can lead to significant threats and consequences to public
safety. Software failures are caused by data race bugs intro-
duced during parallel (or distributed) programming practices
and can be activated when two or more tasks or threads are
concurrently accessing the shared resources while at least one
of them is performing writing (or modifying) operations in un-
expected orders [2], [3]. Since the execution orders of threads
are not certain, a data race failure is usually nondeterministic
and hard to reproduce even with the same workloads. To cause
a data race failure as soon as possible, data race bug detection
and testing techniques have been proposed [2], [4]–[8], aiming
to systematically control the scheduler to cover all scheduling

0018-9529 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on February 24,2022 at 14:09:38 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4121-3665
https://orcid.org/0000-0001-7922-9067
mailto:qiukun@buaa.edu.cn
mailto:zhengz@buaa.edu.cn
mailto:beibeiyin@buaa.edu.cn
mailto:ktrivedi@duke.edu

4 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 1, MARCH 2020

possibilities. However, even with the help of the developed tools,
the extensive application of these techniques on large systems
is hindered by issues with the time overhead. Therefore, how to
handle potential data race failures and improve systems’ relia-
bility/availability remains an important research topic.

Fault mitigation techniques, such as the recovery methods [9],
are always introduced in real safety-critical systems to make the
potential failure less severe and to improve the systems’ reliabil-
ity/availability. Due to the elusive behavior of data race software
failures, the practices of fault mitigation and quantitative reli-
ability analysis tend to be proceeded by distinguishing them
from deterministic and easy-to-reproduce cases. Grottke et al.
divided bugs into bohrbugs, which can be certainly reproduced,
and mandelbugs, which have nondeterministic manifestation
behaviors, and proposed distinguished fault mitigation meth-
ods [9]–[12]. As a typical example of mandelbug, data race
bugs could be mitigated by the recovery operation schemes,
such as reconfiguring the environmental conditions and retrying
the fault inputs. Stochastic process models, such as continuous
Markov chain (CTMC), semi-Markov process (SMP), Petri Net,
etc., are used to assess the quantitative reliability/availability of
a system considering potential data race failures and mitiga-
tion techniques since these models can easily describe complex
behaviors [12], [13].

Solving and optimizing these stochastic process models
highly rely on the time to failure (TTF) or mean TTF (MTTF)
metric to be known in the first place [12], [14], [15]. TTF (or
MTTF) denotes the (average) time, in which an application can
normally run for its given workloads. However, the task of es-
timating the TTF/MTTF is impractical for data race software
failures because the failure observation time is too long to col-
lect sufficient samples. Therefore, how to accelerate the data
race failure and reduce the TTF/MTTF estimation time is an
important topic to be studied.

To the state of the art, the stress testing method, such as
accelerating life testing (ALT), has been successfully used for
reducing the TTF/MTTF estimation time when a system suffer-
ing from aging-related bugs (ARBs) [16]–[18]. The stress test-
ing method uses the TTF/MTTF data collected under stressed
conditions to predict the one under target conditions according
to certain models. Facing the same problem, the feasibility of
using the stress testing method to deal with failures caused by
data race bugs has not been systematically studied. Two critical
issues need to be explored to facilitate the stress testing method
as follows.

1) How to accelerate the process of detecting data race soft-
ware failures? We need to determine the influencing fac-
tors as the stress condition to reduce data race failures’
manifestation time and reduce the essential time.

2) How to effectively and efficiently estimate the TTF or
MTTF caused by data race? We need to determine a
model that can relate the TTF/MTTF under different stress
conditions.

In this paper, we present an empirical study of using stress
testing with influencing factors to reduce the TTF/MTTF es-
timation time. Stress testing is commonly conducted to flush

out data race conditions by ceaselessly performing certain
workloads for a long period of time [5]–[7]. However, according
to existing research [5] and our testing experiences, we find that
the purely stress testing practices are neither efficient nor effec-
tive because most of schedule possibilities are still not covered
after iterating workloads for many loops. Aiming to overcome
deficiencies of stress testing, we additionally control programs’
external executing environments, known as influencing factors,
to increase the possibilities of encountering data race precondi-
tions. Based on the software failure mechanism of data races, we
select three influencing factors that could influence programs’
internal execution processes and then increase the risk of trig-
gering the data race bugs.

Furthermore, we empirically study the relationship models
between TTF/MTTF and the influencing factors. The relation-
ship model is a quantified strength function that relates the
response variable, i.e., TTF/MTTF, with the explanatory vari-
able, i.e., the influencing factor [19], [20]. With this relationship
model, the stressed conditions’ TTF/MTTF can be extrapolated
back to predict other operational (or nonstressed) condition val-
ues. Considering that the relationship model plays a pivotal role
in solving the proposed issues, we employ a regression analysis
method to delve into its formula in this paper.

A methodology including experiments and regression anal-
ysis is presented to study the influences and the relationship
model for the proposed influencing factors. This methodology
combines the design of experiments (DOE) [21] and the stress
testing analysis [19], [20]. We conduct the methodology on
six different desktop/server applications, which suffer from real
data race failures.

This paper reveals seven interesting findings that provide use-
ful guidelines for software data race testing, software reliability
modeling, and evaluating, as shown in the following.

1) Finding #1: All three proposed influencing factors can be
used in the stress testing to reduce the expected time to
data race failure for the experimental applications. For the
applications we tested, we could save the reproducing time
for at least 15.9 times. For example, we did not manifest
a failure hidden in an application known as Pbzip when
retrying the failure workload 50 000 times but did observe
the failure with an average of 628.2 reattempts.

2) Finding #2: The stress testing condition, 〈High mem-
ory limitation, High concurrency level, Multiple paral-
lel level〉, is the optimized condition to minimize the
time to data race failure.1 Findings #1 and #2 indicate
a lightweight probabilistic stress testing method to detect
and reproduce race conditions during development phrase.

3) Finding #3: The MTTF varies with different influencing
factor settings. In addition, the variations caused by dif-
ferent factors for the same data race suffering application
are different. This finding gives the formal statistical evi-
dence that the environmental diversity mitigation method
proposed in [11] and [12] can be applied for data race
failures. Environmental diversity approach expects to im-

1The terms in this finding are defined in Section II.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on February 24,2022 at 14:09:38 UTC from IEEE Xplore. Restrictions apply.

QIU et al.: STRESS TESTING WITH INFLUENCING FACTORS TO ACCELERATE DATA RACE SOFTWARE FAILURES 5

prove systems’ availability by reconfiguring applications’
environmental conditions and retrying the failure inputs.

4) Finding #4: Power model best fits the relationship between
MTTF and the influencing factor explanatory variable.2

5) Finding #5: Weibull distribution model best fits the TTF
distribution model of data race failures.3

6) Finding #6: Power Weibull distribution model best fits
the relationship model between TTF and the influencing
factor explanatory variable.

7) Finding #7: The MTTF and TTF can be accurately
estimated by using the proposed influencing factors
as explanatory variables. Findings #4–#7 provide the
TTF/MTTF distribution and estimation information,
which are necessary for performing quantitative relia-
bility/availability analysis and designing fault mitigation
techniques.

This paper is organized as follows. Section II presents the
influencing factors for data race software failures. Section III
presents the experimental methodology employed in this paper.
Section IV organizes the experimental data analysis results and
seven findings into the answers to three research questions.
Sections V lists potential threats to the validity of this paper.
Section VI shows the related work. Finally, conclusions and
future work are given in Section VII.

II. INFLUENCING FACTORS

In this section, we describe the influencing factors and discuss
how the influencing factors affect the occurrence of data race
failures. The factors are expected to accelerate data race failures
by impacting the failure manifestation process. Recall that a
data race occurs when there are memory accesses in a program
that satisfy all the following conditions:

1) operating on the same memory location;
2) performing concurrently or in parallel;
3) writing (or modifying) operations;
4) not protected by synchronization mechanisms.
Therefore, the main idea of influencing a program’s internal

execution and accelerating the occurrence of data race is to
increase the risk of breaking up unprotected synchronization
of writing (or modifying) operations on the shared locations.
Based on this motivation, we select three influencing factors as
follows.

1) Memory limitation, which is the maximum resident set
size (mRSS) of physical memory available for the running
program.

2) Concurrency level, which is the number of concurrent
visiting clients/users of the program.

3) Parallel level, which is the number of processors available
for the program.

In the following, we will explain how these three influencing
factors affect the internal execution behavior of a program and
increase the probability of triggering data race conditions.

2The mathematical format of Power model is defined in Section III-B3.
3The pdf of Weibull distribution and Power Weibull distribution are given in

Section IV-C.

A. Memory Limitation

The memory limitation controls the maximum physical mem-
ory set size a to-be-tested application can access. The physical
memory limitation can increase the frequency of thread context
switching [22] and, then, indirectly increase the threads’ risk
of being interrupted from the synchronization parts. In a thread
context switch, the accessing of a processor is switched from
one thread to another. According to the principle of an operating
system (OS) [22], [23], if a processor tries to read from a virtual
memory address that is not currently mapped to a RAM address,
a page fault occurs; then the running thread is pre-empted and
suspended to the waiting state, during which its required data is
mapped into the RAM from the disk by the OS. Simultaneously,
another thread in the ready state starts to run. Thus, if the avail-
able physical memory is limited, the frequency of page fault is
increased, thereby increasing the interaction probability among
concurrent threads, which increases the probability of encoun-
tering unprotected synchronization operations. Therefore, we
select memory limitation as the first influencing factor.

Memory limitations are an indirect and lightweight method
to control the frequency of context switches. The alternative
method to this aim is inserting instruments in threads/processes
and scheduling them deliberately. Such intrusive approach could
slow down the system and faces space explosion problems,
hence is hard to be employed for large scaled applications.
However, too harsh memory limitation stress could lead to the
thrashing problem [24], in which pages kept on swapping in
and out of RAM alternatively. Thrashing could lead to longer
workload execution time and fail to reduce the testing time.
Therefore, we must reserve a certain margin so that thrashing
has no significant impact on the experimental time.

B. Concurrency Level

The concurrency level refers to the number of different ker-
nel threads or processes to be executed out-of-order or in partial
order based on which user-level tasks are mapped. According
to our prior experimental experience and literature studies [25],
[26], data race software failures occur more frequently with
higher concurrent workloads. Higher concurrency level work-
loads increase the complexity and intensity of context switching
for racing the shared resources. Therefore, they could increase
the possibility of hitting certain thread orders that can break the
synchronization and thus trigger a data race failure. Due to the
aforementioned reasons, the concurrency level is selected as the
second influencing factor in this paper.

C. Parallel Level

The parallel level controls the number of processors that
can be accessed by the testing application. A data race oc-
curs when two or more threads are executing modifications
on a shared memory location without synchronization. For a
single-processor-equipped system, the threads are scheduled
to alternatively access the processor, and the shared mem-
ory location is accessed by only one threat at a time. While
for a multiple-processor case, the spawned threads can run on

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on February 24,2022 at 14:09:38 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 1, MARCH 2020

Fig. 1. Overview of the experiment and analysis process.

multiple processors simultaneously, and the probability of two
or more threads modifying the shared memory location at the
same time is greatly increased. Compared with the multiple-
processor case, it is easier for a single-processor system to main-
tain the synchronization of modification operations because only
one thread can access the location in each epoch. By contrast,
if multiple processors are equipped, the risk of hitting certain
orders among the threads is increased due to the possibility of
more threads attempting to modify the shared location. Con-
sidering this characteristic, we select parallel level as the third
influencing factor.

III. EXPERIMENTAL STUDY

In this section, a stress testing experimental methodology
is presented to explore the impacts of the influencing factors
proposed for data race software failures and their mathematical
relationship models. In addition, we adopt the methodology for
six applications that suffer from real data race software failures.

A. Research Questions

The aim of the experiments is to answer the following research
questions on influencing factors.

RQ1: Whether the influencing factors have impacts on the
MTTF?

RQ2: What is the relationship model between the MTTF and
the influencing factors?

RQ3: What is the relationship model between the TTF and
the influencing factors?

We propose RQ1 to empirically verify the effectiveness of
the proposed influencing factors on accelerating the occurrence
data race failures. RQ2 and RQ3 are proposed to figure out the
models for the purpose of making predictions efficiently.

B. Overview of the Experimental Design and Analysis Process

Fig. 1 shows the architecture of our experimental design and
analysis process. The process includes two main phases, the
experiment phase and the statistical characterization analysis
phase. The experiment phase includes two stages. The purpose
of the first stage is to determine which influencing factor(s)
or their interactions can be adopted to reduce the testing time.
The purpose of the second stage is to collect sufficient sam-
ples to study the mathematical relationship models between
TTF/MTTF and the influencing factors. When the first stage
is accomplished, the optimized conditions of the influencing
factors, which are expected to minimize the testing time, are
obtained to reduce the time costs of the second stage of the
experiment. Then, after the data are collected in the second
stage, regression analysis is applied to explore the relationship
between TTF (or MTTF) and the influencing factors. In the fol-
lowing, we explain the details of the experimental process and
the data analysis by four parts.

1) First Stage of the Experiment: We adopt the full factorial
DOE [21] to learn the s-effects of three influencing factors,
namely memory limitation, concurrency level, and parallel level,
and their interactions. The objective of a full factorial experiment
is to create a set of test scenarios (namely, a test plan) that can
separate out the impact of specific variables from that of a group

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on February 24,2022 at 14:09:38 UTC from IEEE Xplore. Restrictions apply.

QIU et al.: STRESS TESTING WITH INFLUENCING FACTORS TO ACCELERATE DATA RACE SOFTWARE FAILURES 7

TABLE I
EXPERIMENTAL PLAN FOR THE FIRST STAGE

of variables. In the factorial experiments, we consider two levels
for each factor.

Table I shows the plan for the first stage of the experiment.
The second to fourth columns denote the stress levels of the
influencing factors. The last column represents the number of
replicates of each stress condition. Since there are two levels
for each factor, a total of 23 (8) combinations are required to be
tested. We use High and Low to denote the high stressed level
and low stressed level for memory limitation and concurrency
level, and use Multiple and Single to denote multiple level and
single level for a parallel level factor. Taking into account the
statistical error, in this stage, the experiment under each stress
condition is repeated five times, which is calculated according
to the algorithm in [21], for a total of 8 × 5 (40) replicates for a
given application.

Based on the data obtained in the first stage of the factorial
experiment, the s-effects [21] of each influencing factor and
their interactions are analyzed to determine which influencing
factors have significant impacts on accelerating the occurrence
of data race failures. We conclude that an influencing factor
has significant s-effects if its absolute value is greater than the
α = 0.05 significant value obtained by Lenth’s method [27]. The
optimized conditions are determined by comparing the means
of the experimental results under the eight stressed conditions.
The analysis results are shown in Section IV-A.

2) Second Stage of the Experiment: We adopt the single-
factor DOE [21] to learn the relationship model between
TTF/MTTF and one of the two influencing factors, i.e., mem-
ory limitation and concurrency level. Through the relationship
model, we can obtain the rate of change of the TTF/MTTF with
respect to influencing factor settings and then can predict the
TTF/MTTF in other target settings. Because the applications
we focused on are not high-performance-computing (HPC) ap-
plications, which perform complex algorithms on huge data sets
and usually need dozens of processors in different clusters [28];
thereby, most of the applications are running on a single com-
puter machine with a discrete, limited processors, in contrast
to other factors, which are continuous and have wide ranges of
values. It is infeasible to employ the number of processors as an
explanatory variable for TTF/MTTF. Therefore, the relationship
model for the parallel level factor is not explored in this paper.

The stress loading strategy, including the number of stress
levels, sample sizes, and settings for each level, is in the next
step. In this paper, for each factor, we design 6 stress levels and
perform 15 replicates for each level, for a total of 2 × 6 × 15

(180) replicates for each application. Because the settings for
each level are dependent on the applications, we explain the val-
ues of the settings in Section III-D along with the experimental
applications.

For the data obtained in the second stage of the experiment,
we first use the nonparametric ANOVA, in terms of the Kruskal–
Wallis test [29], to determine whether the distribution of TTF
changes with the settings of the memory limitation or concur-
rency level. We conclude that the distribution changes signif-
icantly if the p-value of the Kruskal–Wallis test is less than
α = 0.05. Moreover, the specific variation function is explored
in the regression analysis phase.

3) MTTF Regression Model Study: We apply least-squares
regression method to analyze the relationship model between
the MTTF variable and the influencing factor explanatory vari-
ables. Four types of candidate relationship models, namely Lin-
ear model, Exponential model, Logarithmic model, and Power
model, [19], [20], [30], [31], are tested to determine the best-
fitting model by comparing their goodness of fit (GoF) statistics.
According to the central limited theorem [32], the mean of a
large number of independent and identically distributed random
variables tends to follow a Normal distribution. Therefore, in
the regression analysis, we assume that the MTTF follows a
Normal distribution. The analysis details will be described in
Section IV-B.

The mathematical forms of the four candidate relationship
models are given as follows:

Linear model: T = β0 + β1S
Exponential model: T = β0e

β1 S

Logarithmic model: T = β0 + β1 log(S)
Power model: T = β0S

β1

where T denotes the s-expectation of the response variable, i.e.,
the MTTF variable, S denotes the explanatory variable, which
is the memory limitation variable or concurrency level variable
in this paper, β0 denotes the intercept parameter, β1 denotes
the coefficient parameter, and log(·) is the natural logarithm
function.

4) TTF Regression Model Study: In this paper, we use the
s-maximum-likelihood estimation to analyze the relationship
between TTF and the influencing factor variables. According to
the s-maximum-likelihood estimation procedure [19], [20], we
first study the local distribution of TTF under a certain influ-
encing factor setting and then study the overall distribution of
TTF under a whole group of influencing factor settings. Finally,
we calculate MTTF from probability density function (pdf) of
TTF. The details of the three analysis steps are described in
Section IV-C.

C. Experimental Subjects

In this section, we will briefly introduce the software appli-
cations used in our experiments.

1) Airline and Account: They are two applications and are
widely used as benchmarks for evaluating the validity of data
race bug detection techniques [33], [34]. Airline provides the ser-
vice of selling tickets for an airline cooperation. The data race

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on February 24,2022 at 14:09:38 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 1, MARCH 2020

TABLE II
EXPERIMENTAL APPLICATIONS AND EXPERIMENTAL SETTINGS FOR THE FIRST STAGE

bug in Airline is caused by an unprotected shared Boolean vari-
able, known as StopSales, which indicates whether the tickets
are sold out. Similar to Airline, Account contains an unprotected
field in a class, known as PersonalAccount, which represents a
personal account in a bank. We use the try-exception trick to
capture the exception caused by the data race bug, which ends
the application. To eliminate the possibility of misjudging, we
assert the applications’ exit number to make sure the failure is
caused by data race.

2) MySQL: It is a popular open-source database manage-
ment software system. We select a workload that can trigger
a data race bug indexed by #38691 in the MySQL bug re-
port website [35]. The bug is an incomplete implementation
of managing locks for multiple tables in the function named
mysql_multi_update_prepare(). The failure is determined by its
ERROR numbers logged in log files, which is 2013.

3) Mozilla: It is downloaded from the test benchmark of
Radbench [36], and is a part of Mozilla SpiderMonkey (the
Firefox JavaScript engine). The data race bug can be triggered
when the garbage collector releases the resources used by other
threads, which cause a null pointer reference crash. As a result,
we assert the data race failure by monitoring a segmentation
fault [22], whose exit (or error) code is 139.

4) Pbzip: It is the parallel version of bzip2, which is a file
compressor, and has been studied in the literature [7]. The ver-
sion number of Pbzip tested in this paper is 2-0.9.4. During the
execution of the application, concurrent consumer threads are
spawned to compress a target file. However, the main thread
may release shared resources while its consumer threads are not
completed, which cause a segmentation fault crash. Therefore,
this failure can be confirmed by the application’s exit code, 139.

5) Memcached: It is an open-source, distributed memory
object caching system that is intended to increase the speed of
dynamic web applications by alleviating database loads. The
version we studied is indexed by 1.4.4 [7], [36]. Failure oc-
curs when two or more clients are concurrently modifying a
cached item, and one of them may release the item when other

threads are using it. For this application, we first start the Mem-
cached server and then spawn concurrent clients to increase
modification of the cached items. The failure can be asserted by
comparing the computed values with the expected values.

D. Experimental Setup

Our experiments are conducted on a virtual machine with
1 GB RAM, the Ubuntu 14.04 OS, gcc 4.8.4, and JDK 1.8.0_91.
The hardware system includes an Intel core i7-3770S 3.1 GHz
four CPUs, 8 GB RAM. Since many applications and samples
are tested, the virtual machine can effectively and efficiently
replicate the same testing operating environments for different
applications.

According to the experimental procedure shown in Fig. 1,
we set up the two stages of the experiments for six applica-
tions. Table II summarizes the experimental applications and
the experimental settings for the first stage. The second column
presents a brief description of the applications’ functionalities
and features. The third column shows the workload formats re-
quired to reproduce the data race failures. The fourth column
presents the influencing factors to be utilized. The fifth and
sixth columns present the settings of the High level and Low
level. The seventh column shows the mRSS [23] obtained for
the loaded workloads. mRSS indicates that the maximum physi-
cal memory is used by performing the given workload. We treat
the mRSS as the boundary between the High stressed and Low
stressed memory limitation levels. High stressed values are ex-
pected to be less than the mRSS to constrain memory resources
and to trigger more page faults. By contrast, Low stressed val-
ues should be larger than mRSS to cause little or no unnecessary
page faults. The last column shows the number of maximum
workload repetition times.

Table III summarizes the experimental settings for the second
stage. The second and third columns show the six stress levels’
values, which are determined by experimental analysis of the
first stage as described in Section IV-A. The last column shows

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on February 24,2022 at 14:09:38 UTC from IEEE Xplore. Restrictions apply.

QIU et al.: STRESS TESTING WITH INFLUENCING FACTORS TO ACCELERATE DATA RACE SOFTWARE FAILURES 9

TABLE III
EXPERIMENTAL SETTINGS FOR THE SECOND STAGE

the number of replicates for each stress level. In the following,
we further introduce the setup of our experiments in terms of
five components.

1) Workload: In a stress testing replicate, we iteratively load
a fixed workload to a target application. This strategy has been
widely adopted in the testing of data race failures [5], [37]. The
workload utilized is provided by the bug reporters or bench-
mark creators and may cause an observable and automatically
detectable failure.

2) Response Variable (or TTF): Instead of using the clock
time directly, we use the number of workload repetitions before
the manifestation of a data race failure as the response variable
to measure the TTF for an application, which can greatly reduce
the cost of recording and is widely used in research [16], [17],
and [18]. Note that the repetition number and the clock time
can reciprocally transform into each other given the average
workload performance time.

The observed data for the responsible variable data can be
divided into two types. The first type is known as complete data
[19], which are generated when a test ends upon observing a data
race software failure. The second type is called censored data
[19], which are collected when a test ends without observing a
failure before the maximum repetitions are reached.

3) Memory Limitation Settings: It is implemented by limit-
ing the gross physical memory size that a process can access
to a predefined value by a tool cgroup [38]. To avoid the harsh
memory thrashing problem, the memory limitation value should
set to be larger than 30% of mRSS, which can be obtained by
the Linux tool called /usr/bin/time. As shown in Table II, in
the first stage, the High stressed level is configured to a value
between 30% and 60% of an application’s mRSS, and the Low
stressed level is then configured to a value greater than mRSS to
minimize the effects caused by strained RAM resources. In the
second stage, we have a uniform selection of six values around
the value representing High, as shown in Table III.

4) Concurrency Level Settings: For Airline, Account, and
Pbzip, the concurrency level settings can be implemented
by setting their input parameters. For MySQL, Mozilla, and

Memcached, their concurrency levels are controlled by chang-
ing the number of connecting clients. As shown in Table II, in
the first stage, the values of the Low and High levels are set
according to the applications’ specifications. Since the data race
bugs we tested are very hard to reproduce with the concurrency
level reported, we then use the number in provided bug repro-
duction script as the Low level, such as 2 or 10. Since too large
concurrency could lead to out-of-memory errors and block the
OS for a long time, for High level, we first select a large num-
ber and gradually decrease that number until no out-of-memory
errors or blocking problems. At the second stage, we have a
uniform selection of six values between the values representing
the Low level and the High level. For example, for Memcached,
we set the High level to 50 and the Low level to 5 for the first
stage of experiment. Moreover, the settings for its second stage
are set to 5, 10, 20, 30, 40, and 50, as shown in Table III.

5) Parallel Level Settings: The factor setting is implemented
by configuring the number of processors for a virtual machine.
In the first stage, the number of processors is set to 2 for Multiple
level and 1 for Single level.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we use statistical methods to analyze the col-
lected experimental data and attempt to study the following three
research questions.

RQ1: Whether the influencing factors have impacts on the
MTTF?

RQ2: What is the relationship model between the MTTF and
the influencing factors?

RQ3: What is the relationship model between the TTF and
the influencing factors?

According to the research questions studied, the analyses are
organized into three parts, and seven findings are presented in
the process of discussion.

A. Answer for RQ1

For a better explanation, we divide the impact analysis and
findings into two parts according to their stages.

1) Analysis and Findings in the First Stage: The s-effects
analysis method in the literature [21] was employed to analyze
data collected in the first stage (see Table I) for each applica-
tion. For all to-be-examined factors, we first assume that there
is a linear regression model between them and the failure time
data. Then, the s-effects or coefficients for each factor and their
interaction can be calculated by solving a set of linear equations
with respect to the eight treatments, whose algorithms can be
found in [21]. Second, we need to perform an ANOVA F test
to test the hypothesis of whether the s-effects are statistically
significant for the regression model, and we adopt α = 0.05 as
the threshold. Note that the linear regression model assumption
is just a coarse assumption applied to filter significant influenc-
ing factors, and a more precise model will be obtained through
the second stage analysis. Fig. 2 illustrates the absolute values
of the s-effects of both influencing factors and their interactions
for six experimental applications. The red dashed reference line

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on February 24,2022 at 14:09:38 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 1, MARCH 2020

Fig. 2. Absolute values of s-effects for both influencing factors and their interactions of six experimental applications. (a) Airline. (b) Account. (c) MySQL.
(d) Mozilla. (e) Pbzip. (f) Memcached.

denotes s-significant value of α = 0.05, indicating whether the
factor has a significant impact.

Finding #1: All three proposed influencing factors can be
used in stress testing to reduce the expected time to data race
failure for the experimental applications.

Fig. 2 shows that at least one of the three influencing factors
has a greater absolute s-effect values than the significant value
for each application. Specifically, parallel level has significant
impacts on five of six applications and has the largest magnitude
of s-effects for Airline, Account, MySQL, and Memcached ap-
plications, indicating the large effectiveness of the failure time
reduction for their data races. Concurrency level has significant
impacts on five of six applications and is the factor with the
largest s-effects on Account, MySQL, and Pbzip applications.
Memory limitation affects four of six applications and has the
largest s-effects on Mozilla and Pbzip applications.

Additionally, we observe that an influencing factor may not
affect a certain application. For example, for Pbzip application,
the value of s-effects of parallel level is around 1.50, which is
less than its s-significant value, 2.04, indicating that the multiple
processors setting does not have a statistically significant impact
on the probability of triggering its data race bug. By analyzing
the codes or configurations of some applications, we find that the
settings of the applications may shield the impact of the influenc-
ing factors. For example, the configuration of some applications
can implicitly constrain the number of concurrent users allowed,
which limits the influence of the concurrency levels. According
to the documentation of Memcached [39], although its default
maximum number of threads can be configured, unexpectedly,
it adopts a different user connection service mechanism. One
thread can simultaneously serve several connections because of
their low memory costs; however, the expectations are that one
user connection is handled by one thread/process, such as in the

Apache server software. The special Memcached service pattern
can shield the concurrency level factor.

Optimized condition of stress testing was determined by ana-
lyzing the mean value of the response variable of the first stage
of experiments. Under the optimized condition of stress testing,
the time to data race failure is expected to be reduced the most.
We tested eight different conditions, known as EXP1 to EXP8
for the first stage. Table IV presents the mean values of the
response variable under the eight experimental conditions for
six applications. The float number in each cell represents the
value calculated by (1), and the symbol (censored) denotes that
no failure is observed under the corresponding stress settings
before the maximum repetitions are reached, and the bold font
is used to emphasize the smallest value

t̄i =

∑ni

j tij

ni
(1)

where t̄i denotes the mean value of the response variable (or
MTTF) under the ith stress conditions, ni denotes the number
of observed samples under the ith stress condition with casting
off the censored ones, and tij denotes the observed response
variable value for the ith stress condition and the jth replicate.

Finding #2: The stress testing condition, 〈High memory lim-
itation, High concurrency level, Multiple parallel level〉, is the
optimized condition that minimizes the time to data race failure.

According to Table IV, the mean values of the response
variable for EXP8 are much smaller than those of the
other stress conditions. For Account, MySQL, and Mem-
cached, their mean values, which are 144.4, 5.0, and 39.0,
respectively, are the smallest among the eight tested condi-
tions. For the other three applications, i.e., Airline, Mozilla,
and Pbzip, their corresponding mean values of the re-
sponse variable for EXP8, which are 9.8, 546.8, and 1608.0,

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on February 24,2022 at 14:09:38 UTC from IEEE Xplore. Restrictions apply.

QIU et al.: STRESS TESTING WITH INFLUENCING FACTORS TO ACCELERATE DATA RACE SOFTWARE FAILURES 11

TABLE IV
MEAN VALUES OF RESPONSE VARIABLE IN THE FIRST STAGE OF EXPERIMENTS

respectively, are the second largest. For experimental condi-
tion EXP1, all cells are filled with (censored) symbols, indi-
cating that no failures are detected for all the tested applica-
tions. Because the stress testing condition EXP1 is 〈Low mem-
ory limitation, Low concurrency level, Single parallel level〉,
which is expected to be the nonstressed working environment,
we can conclude that data race failures are difficult to manifest
under normal operational conditions. For the other six exper-
imental conditions, i.e., EXP2–EXP7, the expected data race
failures can be observed before the maximum number of rep-
etitions, indicating that using only one of the three influencing
factors for the stress testing can accelerate the occurrence of the
data race failures of the applications.

2) Analysis and Findings in the Second Stage: We adopted
the nonparametric ANOVA, known as the Kruskal–Wallis test
[29], to analyze the data collected from the second stage. We
tested two hypotheses for two groups (six levels for each) of data,
i.e., memory limitation group and concurrency level group, for
each application. If the Kruskal–Wallis test’s p-value is less than
0.05, we reject the null hypothesis. The two hypotheses are as
follows.

1) Hypothesis 1: The TTF of each subject is not affected by
the different levels of memory limitations.

2) Hypothesis 2: The TTF does not change with the variation
in concurrency levels.

Table V summarizes the Kruskal–Wallis test analysis results
for the two hypotheses. The third column, N, denotes the number
of replicates observed with casting off the censored data. The
fourth and fifth columns, H and DF, denote the Kruskal–Wallis
statistics and the s-degree of freedom, respectively. The last
column shows the Kruskal–Wallis test’s p-values.

Finding #3: The MTTF varies with different influencing fac-
tor settings. In addition, the variations caused by different factors
for the same data race suffering application are different.

According to Table V, it is clear that all the applications reject
at least one hypothesis, indicating that their MTTFs are sensi-
tive to the influencing factor settings, i.e., memory limitation
and concurrency level. First, for the memory limitation variation
study, Airline, Account, and Pbzip applications’ p-values, which
are 0.018, 0.001, and 0.001, respectively, are less than 0.05, in-
dicating that the MTTFs for these three applications vary with
the setup of the physical memory set sizes [23]. Second, for the
concurrency level variation study, Account, MySQL, Mozilla,
Pbzip, and Memcached applications’ p-values, which are 0.001,
0.001, 0.001, 0.001, and 0.002, respectively, are smaller than

TABLE V
KRUSKAL–WALLIS TEST ANALYSIS RESULTS

0.05, indicating that the MTTFs for these three applications are
varying with the concurrent clients/users number setup. Four
groups have p-values greater than 0.05, which indicates the
small variance among different influencing factor settings. This
could be caused by some special mechanisms inside the ap-
plication, which makes the application insensitive to the stress
factor. For example, Memcached serves multiple clients in one
thread. Therefore, having a better understanding of program’s
internal architecture can help in determining the accelerating
significance of an influencing factor.

Fig. 3 shows the boxplot of TTF (i.e., response variable) by
the setup of corresponding influencing settings. A total of eight
sensitive groups have p-values less than 0.05, and there are four
nonsensitive groups. We can observe that in memory limitation
subfigures, i.e., Fig. 3(a), (c), and (i), there are obvious upward
trends in the TTF with respect to the increasing of memory
limitation settings. By contrast, for subfigures illustrating the
impacts of concurrency level, i.e., Fig. 3(d), (f), (h), (j), and (l),
there are recognizable downward trends with increasing concur-
rency level. Moreover, Fig. 3(b), (e), (g), and (k) shows flatter
variations with different influencing settings, and we treat them
as nonsensitive groups. Based on these subfigures, we obtain an
overall, but rough, understanding of the relationship between
response variable and influencing factors. In the following two
sections, we present the analysis procedures and findings for

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on February 24,2022 at 14:09:38 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 1, MARCH 2020

Fig. 3. Sample values of the response variable (or TTF) by influencing factors for six applications. (a) Airline by memory limitation. (b) Airline by concurrency
level. (c) Account by memory limitation. (d) Account by concurrency level. (e) MySQL by memory limitation. (f) MySQL by concurrency level. (g) Mozilla by
memory limitation. (h) Mozilla by concurrency level. (i) Pbzip by memory limitation. (j) Pbzip by concurrency level. (k) Memcached by memory limitation. (l)
Memcached by concurrency level.

the MTTF and TTF regression models and further formalize the
relationship model for the purpose of estimation.

B. Answer for RQ2

For this research question, we tested four types of relation-
ship models, i.e., Linear model, Exponential model, Logarithmic
model, and Power model; the mathematical models are shown
in Section III-B3. The data analyzed were the eight groups of
response variables from the second stage shown in Fig. 3. We
adopted the least-squares regression to estimate model param-
eters and adopted the s-R-squared and s-R-squared adjust as
the GoF indicators [40]. For the s-R-squared and s-R-squared
adjust, larger values indicate better fit.

Table VI summarizes the GoF statistics and the fitting results.
The second column shows the statistically significant influenc-
ing factor for each application. The third to tenth columns show
the s-R-squared and s-R-squared adjust statistics for four types
of relationship models. The last column presents the best-fitting
MTTF regression models with respect to the explanatory vari-
ables, where ML denotes maximum limitation variable and CL
denotes concurrency level variable.

Finding #4: Power model best fits the relationship between
MTTF and the influencing factor explanatory variable.

According to Table VI, the Power model provides either the
largest or the second largest values of s-R-squared and s-R-
squared adjust statistics for the eight groups, and the GoF values
are all greater than 80% except for that of Airline application,

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on February 24,2022 at 14:09:38 UTC from IEEE Xplore. Restrictions apply.

QIU et al.: STRESS TESTING WITH INFLUENCING FACTORS TO ACCELERATE DATA RACE SOFTWARE FAILURES 13

TABLE VI
MTTF REGRESSION ANALYSIS RESULTS

indicating the accuracy of the utilized regression models. By
contrast, the best-fitting model for Account and Mozilla is Expo-
nential model, and their corresponding GoF values are all greater
than 87.1%. The values corresponding to the Power model are
all greater that 80%, indicating that the Power model can also
be used to describe the relationship. In the following, we show
the regression lines along with the response variable values with
respect to the memory limitation settings and concurrency level
settings.

1) By Memory Limitation Settings: Figs. 4(a) and (d) and
5(a) show the regression lines of the logarithmically transformed
MTTF, i.e., MTTF (transformed), with respect to the loga-
rithmically transformed memory limitation variable, i.e., ML
(transformed), for Airline, Account, and Pbzip, respectively. In
the subfigures, the squared dot denotes the transformed MTTF,
which is calculated by (1), the line denotes the regression line,
whose mathematical formula is shown in the last column of
Table VI, and the natural logarithmic coordinates are used for
better illustration. In the subfigures, we can observe that the dots
scatter around the best-fitting lines, indicating the high accu-
racy of the regression analysis and the sufficiency of the utilized
candidate models.

On the other hand, for the trends of the MTTF variations, we
can observe that the regression lines for memory limitation fac-
tor all have positive slope magnitudes, i.e., 0.4782, 1.044, and
2.426, confirming that the expected time to data race failures
can be reduced by decreasing the memory limitation settings.
In addition, the slope magnitudes differ among the applications,
indicating that some applications are more sensitive to the mem-
ory limitation settings. In our opinion, the differences are caused
by the different memory usage intensities among applications.
For example, although Pbzip and Memcached have almost the
same number of lines of instructions, Pbzip requires much more
memory to run, i.e., approximately 37 360 KB compared to
3498 KB for Memcached (see Table II). Thus, according to this
observation, we can have an implication that memory limitation
is more likely to accelerate the applications that have a larger
memory usage intensity.

2) By Concurrency Level Settings: Figs. 4(g) and (j) and
5(d) and (g) illustrate the regression lines of the logarithmically
transformed MTTF, i.e., MTTF (transformed), with respect to
logarithmically transformed concurrency level variable, i.e., CL

(transformed), for Account, MySQL, Pbzip, and Memcached,
respectively. Similarly, the regression lines’ mathematical for-
mulas are shown in the last column of Table VI. Fig. 4(m)
shows the regression line of transformed MTTF with respect
to concurrency level variable for Mozilla application. For these
five subfigures, all the dots scatter around the regression lines,
indicating the tightness of the regression analysis.

The trends of the MTTF variations are opposite to those for
memory limitation settings, and the regression lines have nega-
tive slope magnitudes of −0.8878, −2.075, −0.1414, −4.780,
and−0.5705, respectively. These slope values support the obser-
vation that the expected time to data race failure can be reduced
by increasing the concurrency level.

C. Answer for RQ3

For this research question, we explored the relationship model
between TTF and the influencing explanatory variables, i.e.,
memory limitation and the concurrency level, by maximum-
likelihood estimation [20]. Two steps are included in maximum-
likelihood estimation to make the exploration. First, a probabil-
ity distribution with unknown parameters is constructed for the
collected data. Second, those unknown parameters are estimated
by maximizing the samples’ (log-) likelihood function, which
requires the assumed distribution’s pdf and cdf. Compared to the
least-squares estimation, maximum-likelihood estimation can
handle censored observations and Non-Normal assumed distri-
butions, such as Weibull distribution. The assumed distribution
model for a TTF random variable is constructed by combin-
ing the relationship model and the local distribution model into
an integrated model. Since we use influencing factor S as the
explanatory variable for the regression model, the TTF can be
expressed in a general form of (2).

t(s) = μ(s) + σ · ε (2)

where μ(s) denotes the s-expectation when S = s and is also
known as the relationship model between the influencing factor
and the response variable (or TTF), σ denotes the scale param-
eter, and ε denotes the random item. From this equation, we
known that ε determines the randomness of TTF when the influ-
encing factor is set to be a certain value s and also determines
TTF’s distribution model. The distribution for ε is known as the

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on February 24,2022 at 14:09:38 UTC from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 1, MARCH 2020

Fig. 4. TTF/MTTF regression results by influencing factors for six applications (part 1). (a) Airline MTTF regression by ML. (b) Airline TTF regression by ML.
(c) Airline TTF s-standardized residuals plot by ML. (d) Account MTTF regression by ML. (e) Account TTF regression by ML. (f) Account TTF s-standardized
residuals plot by ML. (g) Account MTTF regression by CL. (h) Account TTF regression by CL. (i) Account TTF s-standardized residuals plot by CL. (j) MySQL
MTTF regression by CL. (k) MySQL TTF regression by CL. (l) MySQL TTF s-standardized residuals plot by CL. (m) Mozilla MTTF regression by CL. (n) Mozilla
TTF regression by CL. (o) Mozilla TTF s-standardized residuals plot by CL.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on February 24,2022 at 14:09:38 UTC from IEEE Xplore. Restrictions apply.

QIU et al.: STRESS TESTING WITH INFLUENCING FACTORS TO ACCELERATE DATA RACE SOFTWARE FAILURES 15

Fig. 5. TTF/MTTF regression results by influencing factors for six applications (part 2). (a) Pbzip MTTF regression by ML. (b) Pbzip TTF regression by ML.
(c) Pbzip TTF s-standardized residuals plot by ML. (d) Pbzip MTTF regression by CL. (e) Pbzip TTF regression by CL. (f) Pbzip TTF s-standardized residuals
plot by CL. (g) Memcached MTTF regression by CL. (h) Memcached TTF regression by CL. (i) Memcached TTF s-standardized residuals plot by CL.

local distribution, and TTF’s distribution is known as the overall
distribution model.

Based on the data we collected in the second stage exper-
imental data, we first figure out the local distribution. Then
based on (2), we second construct the overall model associated
with relationship candidate models. With the help of maximum-
likelihood estimation, we calculate the unknown parameters and
GoF statistics and determine the best-fitting model among the
candidates. In the following, we will divide the analyses and
findings into two parts according to the steps of the analysis
procedure as presented above for each application.

Step 1: Local distribution analysis
According to the analysis conducted in Section IV-A, there

were eight groups (six settings for each) of sensitive data as
shown in Fig. 3. Therefore, a total of 48 sets of responsible
values under different settings were used. In this part, we tested
four candidate distribution models: Weibull distribution, Log-
Normal distribution, Exponential distribution, and Normal dis-
tribution, whose pdf and s-mean (or MTTF) formulas are shown
in (3)–(10). We applied the Anderson–Darling (AD) adjusted
[41] statistic as the GoF. For the AD statistic, values closer to
zero indicate better fit.

1) Weibull distribution

f(t) =
β

η

(
t

η

)β−1

e−(t
η)β

(3)

MTTF = η · Γ
(

1 +
1
β

)

(4)

where β denotes the shape parameter, η denotes the scale
parameter, and Γ(·) denotes the gamma function.

2) LogNormal distribution

f(t) =
1√

2πσt
e−

1
2 (lo g (t)−μ

σ)2

(5)

MTTF = exp
(

μ +
1
2
σ2

)

(6)

where μ denotes the location parameter, σ denotes the
scale parameter, and exp(·) denotes the exponential
function.

3) Exponential distribution

f(t) = λe−λt (7)

MTTF =
1
λ

(8)

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on February 24,2022 at 14:09:38 UTC from IEEE Xplore. Restrictions apply.

16 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 1, MARCH 2020

TABLE VII
LOCAL DISTRIBUTION ANALYSIS RESULTS

where λ denotes the rate parameter.
4) Normal distribution

f(t) =
1√
2πσ

e−
1
2 (t−μ

σ)2

(9)

MTTF = μ (10)

where μ denotes the location parameter and σ denotes the
scale parameter.

Table VII summarizes the AD statistics of the four distri-
butions for the 48 sets of responsible values under different
settings. We highlighted the smallest and the second smallest
values with bold font.

Finding #5: Weibull distribution model best fits for the TTF
distribution model of data race failures.

According to Table VII, we observe that the column repre-
senting Weibull distribution presents the largest proportion (47
of 48 settings) of the smallest or second smallest AD statistics,
followed by LogNormal (22 of 48), Exponential (18 of 48), and
Normal (9 of 48) distribution columns. In addition, from the per-
spective of a single application, Weibull distribution also sees
the largest proportion.

Steps 2 and 3: Overall distribution model analysis and MTTF
calculation

For the maximum-likelihood estimation, we first constructed
the mathematical forms of the overall distribution models by
combining the local distribution model with the relationship
models, according to the overall model integrating algorithms
described in the literature [20]. Because the fittest distribution
for the applications was Weibull distribution, we obtained two
types of candidate overall models, i.e., Exponential Weibull dis-
tribution model and Power Weibull distribution model, whose
pdfs are shown by (11) and (12), respectively. We applied the
s-standardized residuals plot [20] as the GoF indicator for each
group of samples.

Then, for the overall model candidates, the maximum-
likelihood estimation was used to estimate the unknown pa-
rameters. The s-residuals are the difference values between the
prediction values and the observations. After standardization
according to [20], the s-standardized residuals should look like
the samples of random variable ε. For example, when the local
distribution is Weibull distribution, whose logarithmic transfor-
mation random variable is Smallest Extreme Value distribution
[20], the expected s-standardized residuals should look like the
samples of the standardized Smallest Extreme Value random
variable. Then, if the s-standardized residuals cluster around the
probability function line and fall in 95% confidence interval (CI)
lines, we say the regression model is adequate.

1) Exponential Weibull distribution model

f(t;S = s) =
1

σβ0eβ1 s

(
t

β0eβ1 s

) 1
σ −1

e
−

(
t

β 0 e β 1 s

) 1
σ

(11)
which is obtained by setting β as 1/σ and setting η as
β0e

β1 S (Exponential model) for (3).
2) Power Weibull distribution model

f(t;S = s) =
1

σβ0sβ1

(
t

β0sβ1

) 1
σ −1

e
−

(
t

β 0 s β 1

) 1
σ

(12)

which is obtained by setting β as 1/σ and setting η as
β0S

β1 (Power model) for (3).
Where s denotes a value of S influencing factor variable, which
is a value of memory limitation setting or concurrency level set-
ting, and t denotes a value of the TTF. By comparing the fitting
results of overall model candidates, we found the following two
findings.

Finding #6: Power Weibull distribution model best fits the
relationship between TTF and the influencing factor explanatory
variable.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on February 24,2022 at 14:09:38 UTC from IEEE Xplore. Restrictions apply.

QIU et al.: STRESS TESTING WITH INFLUENCING FACTORS TO ACCELERATE DATA RACE SOFTWARE FAILURES 17

TABLE VIII
TTF REGRESSION ANALYSIS RESULTS

Finding #7: The MTTF and TTF can be accurately esti-
mated by using the proposed influencing factors as explanatory
variables.

In the following, we present the details of the analysis. Ta-
ble VIII summarizes the regression results of the best-fitting
overall model, where β0 , β1 , and σ are the model parameters of
the overall distribution pdfs described in (11) and (12).

According to Table VII, Weibull distribution was the best-
fitting distribution for Airline, Account, MySQL, Pbzip, and
Memcached applications. We found that the Power Weibull dis-
tribution had better fitness than that of the Exponential Weibull
distribution for corresponding values of the response variable
analyzed. The estimated model parameters, in terms of β0 ,
β1 , and σ, and their s-confidence intervals (CI) are shown in
Table VIII.

Figs. 4(b) and (e) and 5(b) show the logarithmically trans-
formed TTF’s 90th, 50th, and 10th percentile lines with respect
to the logarithmically transformed memory limitation variable
for the Airline, Account, and Pbzip applications, where the dots
denote the values of the response variable collected from the
second stage for memory limitation factor. In these subfigures,
most of the dots fall within the 90th and 10th percentile lines,
indicating the high accuracy of the regression analysis. More-
over, there are clear upward trends and different magnitudes
of slope among applications, which supports the findings in
Section IV-B.

Figs. 4(c) and (f) and 5(b) compare the s-standardized residu-
als plot of the memory limitation experiments with the standard-
ized Smallest Extreme Value distribution for Airline, Account,
and Pbzip applications, respectively. In these figures, the red

lines denote the probability function line and its 95% CI for
standardized Smallest Extreme Value distribution, and the blue
points denote the calculated s-standardized residuals. Accord-
ing to the subfigures, we can observe that most s-standardized
residuals fall into the 95% CI lines, indicating the good accuracy
of the Power Weibull distribution model.

The MTTFs for Airline, Account, and Pbzip influenced by
ML, memory limitation variable, can be calculated according to
(4), and the specific forms are given by the following equations:

MTTFAirline(ML) = 0.956395 × e−2.18789 × ML0.507753

(13)

MTTFAccount(ML) = 0.992070 × e−4.69646 × ML1.07249

(14)

MTTFP bzip(ML) = 1.019086 × e−4.69499 × ML2.51977 .
(15)

Figs. 4(h) and (k) and 5(e) and (h) show the logarithmically
transformed TTF’s 90th, 50th, and 10th percentile lines by the
logarithmically transformed concurrency level variable for the
Power Weibull distribution, along with collected response val-
ues. It can be observed that most of the dots fall within the 90th
and 10th percentile lines, indicating the high accuracy of the re-
gression analysis. In contrast to the case for memory limitation,
the percentile lines show obvious downward trends.

Figs. 4(i) and (l) and 5(e) and (h) show the s-standardized
residuals plot with respect to the standardized Smallest Extreme
Value distribution for Account, MySQL, Pbzip, and Memcached
applications. Most of s-standardized residuals scattered within
the 95% CI lines, indicating the good accuracy of the overall
distribution model.

In addition, the MTTFs for Account, MySQL, Pbzip, and
Memcached by CL, concurrency level variable, can be calcu-
lated according to (4), and their specific forms are given as
follows:

MTTFAccount(CL) = 0.977654 × e7.56417 × CL−0.88832

(16)

MTTFM ySQL (CL) = 1.050109 × e12.5242 × CL−1.93619

(17)

MTTFP bzip(CL) = 0.910052 × e39.6112 × CL−4.91551 (18)

MTTFM emcached(CL) = 0.936195 × e5.83177CL−0.60390 .
(19)

For Mozilla application, the overall distribution model is Ex-
ponential Weibull distribution (11). According to Table VII, the
best-fitting distribution for concurrency level factor is Weibull
distribution, whose pdf is given by (3). Compared with Power
Weibull distribution model, Exponential Weibull distribution
model fits the values of the response well. The model’s pa-
rameters, in terms of β0 , β1 , and σ, and their CIs are shown
in Table VIII. Fig. 4(n) shows the logarithmically transformed
TTF’s 90th, 50th, and 10th percentile lines with respect to
the transformed concurrency level settings for Exponential
Weibull distribution. The subfigure shows that most of the
dots fall within the 90% and 10% percentile lines. Fig. 4(o)

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on February 24,2022 at 14:09:38 UTC from IEEE Xplore. Restrictions apply.

18 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 1, MARCH 2020

shows the s-standardized residuals plot with respect to the stan-
dardized Smallest Extreme Value distribution. Since all of the
s-standardized residuals fall into the 95% CI lines, we can con-
clude that Exponential Weibull is accurate.

The MTTF for Mozilla by its CL, concurrency level variable,
is obtained by (4), and is given as follows:

MTTFMozilla(CL) = 1.019113 × e12.0311−0.14866×CL. (20)

Discussion: What are the relations between the MTTF formu-
las obtained in Section IV-B, and those in this section? Two types
of MTTF formulas are obtained in this paper. In Section IV-B,
the MTTF formula (see Table VI) is estimated with the mean
values of the response variable, which require a large number
of samples to support the correctness of the statistical result
considering the central limit theorem’s prerequisite conditions.
Comparatively, in Section IV-C, the MTTF formula is calculated
based on the TTF’s pdf, which requires the prior knowledge of
the TTF’s distribution model. Although the MTTF formulas
are obtained in two ways, we have the following two observa-
tions. First, the corresponding applications’ MTTF mathemati-
cal forms are all the same. For example, for Airline application,
its MTTFs are both in the form of Power model. Second, the
differences between the corresponding intercept parameters and
the corresponding slope parameters for the six applications are
quite negligible.

On the basis of above two observations, we obtain the follow-
ing implication. If the number of samples is sufficiently large,
the MTTF can be estimated by the mean values of the response
variable as shown in Section IV-B, which is easier to calculate.
If the samples are hard to be collected to support a statisti-
cal analysis, the MTTF could be more accurately estimated by
taking advantage of the prior knowledge of the TTF’s distri-
bution model, which is a Weibull distribution as presented in
Finding #4.

V. THREATS TO VALIDITY

In this section, we will discuss the threats to validity from
two aspects.

A. External Validity

Although we perform our empirical studies on six different
applications suffering from real data race failures, we still cannot
claim that the effectiveness of our findings can be generalized
to all software. However, to ensure the generalizability, we se-
lect the applications from four different repositories, namely
SIR [34], Radbench [36], SCTbenchmark [37], and MySQL bug
website [35]. The applications cover different working scenar-
ios, e.g., desk applications (Pbzip and Mozilla), server programs
(MySQL and Memcached), and business software (Airline and
Account). Additionally, our applications cover three common
programming languages, C (Memcached), C++ (Pbzip, MySQL,
and Mozilla), and Java (Airline and Account). Considering these
three languages have different primitive mechanisms to accom-
plish synchronization for concurrent threads, we believe that the
findings obtained from the selected applications can be applied
extensively for a wide range of situations.

The applications we tested are deployed on a single machine;
thereby we cannot claim that all findings are suitable for appli-
cations deployed on HPC systems [28], such as on clouds. The
HPC applications deal with huge sets of data and complex algo-
rithm on hundreds of computers. However, the concurrency level
and parallel level should also be used for the accelerating factors
for HPC applications. Because high number of clients should
increase the complexity of scheduling results; High number of
deployed machines should increase the probability of modify-
ing the unprotected shared resources simultaneously. Therefore,
taking into account the synchronization mechanism similarities
between the desktop/server and HPC applications, we may be
able to generalize part of our findings, for example, Finding #1,
#2, #3, and #5, to HPC applications.

B. Internal Validity

Since the time to a data race failure relies strongly on the
schedulers’ scheduling results, which can be impacted by other
running processes spawned by the OS or other concurrent run-
ning applications, the current testing environments are another
threat. To alleviate this problem, we perform three operations
in our experiments to minimize the influences. First, we man-
ually reboot the machine after the samples are collected from
different stress settings. Second, we add a break time between
two adjacent workload iterations under the same stress setting.
Because a process’s scheduling priority can be affected by its
preceding ones in the queue, we use the time break to minimize
this impact. Third, we will not perform any other unnecessary
tasks on the testing system during the experiment.

Using the virtual machines could contribute to another threat.
The side effects of using a virtual machine are the various un-
known configurations different from real machines. For exam-
ple, compared to a virtual machine, a real machine always has
faster I/O bandwidth for the same files and the same websites.
Those hidden differences could affect the scheduling results and
generate different TTF observations. However, such unknown
configurations cannot affect the influencing factors and their
relationship with TTF/MTTF. The influencing factors are se-
lected based on the motivation that they have physical impacts
on OS schedulers. The relationship model is a quantitative de-
scription of those impacts. The impacts, which are presented in
Section II, are independent of hardware machines. Therefore,
our findings can be applied to both virtual machine and real
machine scenarios. In addition, virtual machines are commonly
used as experimental platforms when studying reliability char-
acteristics, such as failure rate, for software failures caused by
data race bugs in previous studies, such as in [26] and [37].

VI. RELATED WORK

In this section, we review and associate our findings with
related work.

A. Data Race Fault Mitigation Techniques

Various approaches have been proposed to improve the ef-
ficiency and effectiveness of testing for flushing out data race
bugs. The studies [5]–[7], [42] concentrate on detecting data

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on February 24,2022 at 14:09:38 UTC from IEEE Xplore. Restrictions apply.

QIU et al.: STRESS TESTING WITH INFLUENCING FACTORS TO ACCELERATE DATA RACE SOFTWARE FAILURES 19

race bugs by explicitly controlling the OS’s scheduler, aiming at
covering all the possible schedule possibilities. A serious lim-
itation, despite considerable effort spent to overcome, is that
they are not suitable for large-scale systems because of their
complexity explosion and time overhead issues. The approach
of using stress testing by controlling programs’ external envi-
ronmental conditions is inspired by research works [26], [43],
and [44], in which the environmental-dependent bugs are dis-
cussed. Besides, the approach employed in this paper, which
is controlling programs’ environmental conditions, can effec-
tively alleviate the complexity and time overhead issues for
stress testing methods, compared with controlling OS’s sched-
uler. In this paper, Finding #1 confirms the effectiveness of using
environmental factors to increase the occurrence of data races.
Finding #2 presents an optimal combination of environmental
conditions, which can improve the efficiency of debugging and
reproducing race conditions.

However, even with these efforts, it is still necessary to deal
with potential failures caused by data race bugs, in particular
for a safety-critical system. Fault mitigation techniques are em-
ployed to handle the potential failures and improve systems’
dependability [11], [45]–[47]. A system always consists of dif-
ferent components. When component failures are detected by
the failure management part, the fault mitigation mechanism
should keep the failures from contributing to the hazard of the
whole system. Since different types of bugs can cause vari-
ous failure behaviors, fault mitigation methods are therefore
different. Based on their major failure behaviors, bugs can be
classified into bohrbugs and mandelbugs. Bohrbugs cause easy-
to-reproduce and deterministic software failures, whereas man-
delbugs cause hard-to-reproduce and nondeterministic failures.
To mitigate the potential failures caused by bohrbugs, N versions
or data diversity is adopted. However, due to the nondetermin-
istic failure behavior caused by mandelbugs, recovery strate-
gies can be used to eliminate the failures within a short period
[11], [12].

Recovery strategies take advantage of diversifying the failure
components’ working environment conditions, such as Restart,
Reboot, and Reconfiguration actions [12]. Those recovery meth-
ods, also known as the environmental diversity methods [11],
[12], can change the environmental conditions and affect the
activation process of data race bugs. Recovery approaches can
increase the availability for the whole system for two reasons.
First, without having to stop the machine to execute debugging
and repairing, the recovery actions can be accomplished in a
short time and let the system return to normal. Second, after
recovery and changing environmental conditions, the normal
operation time (or TTF/MTTF) is expected to be enlarged.

Failures caused by data race bugs, as typical examples of
mandelbugs, are expected to be alleviated with recovery strate-
gies. For example, when race conditions are detected by fault
management part [46], reconfiguring applications’ environmen-
tal conditions and retrying the failed inputs/workloads should
eliminate the failures. However, there is no formal evidence
to verify its feasibility. In this paper, Finding #3 provides
the statistical evidence for the environmental diversity meth-
ods because the TTF/MTTF varies with different environmental
conditions.

B. Stochastic Process Models and TTF/MTTF Estimation

For a given system, it is necessary to conduct quantitative
analysis to access the dependability metrics, such as safety,
reliability, and availability by building mathematical models.
The models should consider all the failures and fault mitigation
behaviors. Stochastic process models, such as CTMC, SMP,
Markov regenerative process (MRGP), and Petri Net, can reflect
complex system behaviors [13]. A stochastic process model in-
cludes multiple states and the associated transition time between
them. Given all the time parameters of consistent components,
the quantitative metrics can be calculated. For example, CTMC
models are constructed for IBM WebSphere SIP Applications
that are equipped with mandelbug mitigation methods.

To solve a stochastic model, the parameters of TTF/MTTF
(the transition time between states) for software need to be
known in the first place. However, the difficulty for failures
caused by data race bugs is that they are usually manifested
in a rather long time. How to accelerate testing process and
to estimate TTF/MTTF for hard-to-reproduce software failures
have always been a fundamental question to be solved. To the
state of the art, the literature of adopting ALT/ADT [19] tech-
niques have been proposed on solving the problem by focusing
on software failures caused by ARBs, which can cause accu-
mulation of errors and lead to system performance degradation
or crash problems [10]. For example, Matias et al. [16], [17]
first proposed and evaluated the method of using ALT/ADT to
reduce samples’ collection time and estimate the MTTF for a
web server system suffering from ARBs. Zhao et al. [18] stud-
ied the effectiveness of ALT approach on estimating MTTF by
injecting memory leaking bugs.

Motivated by the researches in [16]–[18], how to use
ALT/ADT techniques to test data race failures is a natural re-
search question. In this paper, we empirically study two critical
issues with the techniques, i.e., the influencing factors and their
relationship models with TTF/MTTF. Note that because the
processes of activating and propagating data race bugs are quite
different from that of memory leaking bugs [44], their influ-
encing factors cannot be shared. To the best of our knowledge,
this is the first paper focusing on using regression method to
reduce the data race failures’ TTF/MTTF estimation problem.
We propose memory limitation, concurrency level, and parallel
level as influencing factors. Then, we explore the relationship
models between TTF/MTTF and the influencing factors, which
are shown in Findings #4, #5, #6, and #7.

Given Finding #5, SMP, MRGP, and Petri Net [13], rather
than CTMC (the Exponential transition time distribution as-
sumption), should be considered as more precise and accurate
stochastic models for the system under test. Given Findings
#4, #6, and #7, when several race conditions are detected, both
their failure time and current influencing factor values should
be dumped. Based on the failure time data and our finding re-
lationship model, a Power Weibull distribution model could be
estimated. The quantitative availability function with respect to
different recovery methods or influencing factors could be then
calculated. Taking into account the economic costs, the system
should figure out the optimal fault mitigation actions to achieve
the highest reliability/availability.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on February 24,2022 at 14:09:38 UTC from IEEE Xplore. Restrictions apply.

20 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 1, MARCH 2020

VII. CONCLUSION

In this paper we presented a study of using the stress testing
with influencing factors to accelerate the manifestation process
of data race software failures. In addition, it explored how to
estimate the time to data race failure or mean time to data race
failure for a system. Three influencing factors, namely memory
limitation, concurrency level, and parallel level, were proposed
to accelerate the failure process caused by a data race bug.
The statistical analysis results of experiments confirmed the
validity of the factors in terms of accelerating data race software
failures. Therefore, the proposed influencing factors can be used
to optimize the practices of software testing/debugging for data
race failures.

Furthermore, the regression analysis showed that TTF/MTTF
can be accurately estimated by treating the influencing factors
as explanatory variables. Moreover, the best-fitting relationship
models between TTF/MTTF and the proposed influencing fac-
tors are Power Weibull distribution model and Power model.
These findings can facilitate the reliability evaluation for soft-
ware systems suffering from data race failures.

In the future work, we plan to systematically study the influ-
encing factors and stress testing approaches for software failures
caused by concurrency bugs, including both data race and dead-
lock. We will analyze the similarities and differences of factors
affecting different types of failures and their relationships with
TTF or MTTF.

REFERENCES

[1] M. Grottke, A. P. Nikora, and K. S. Trivedi, “An empirical investigation
of fault types in space mission system software,” in Proc. IEEE/IFIP Int.
Conf. Dependable Syst. Netw., 2010, pp. 447–456.

[2] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and
M. Sridharan, “Efficient and precise datarace detection for multithreaded
object-oriented programs,” ACM SIGPLAN Notices, vol. 37, no. 5,
pp. 258–269, 2002.

[3] P. Fonseca, C. Li, V. Singhal, and R. Rodrigues, “A study of the internal
and external effects of concurrency bugs,” in Proc. IEEE/IFIP Int. Conf.
Dependable Syst. Netw., 2010, pp. 221–230.

[4] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A dynamic data race detector for multithreaded programs,” ACM
Trans. Comput. Syst., vol. 15, no. 4, pp. 391–411, 1997.

[5] S. Park, S. Lu, and Y. Zhou, “CTrigger: Exposing atomicity violation bugs
from their hiding places,” ACM SIGARCH Comput. Archit. News, vol. 37,
no. 1, pp. 25–36, 2009.

[6] M. Musuvathi, S. Qadeer, T. Ball, M. Musuvathi, S. Qadeer, and T. Ball,
“Chess: A systematic testing tool for concurrent software,” Microsoft Res.,
Microsoft Corporation, Redmond, WA, USA, Tech. Rep. MSR-TR-2007–
149, 2007.

[7] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam, “Maple: A coverage-
driven testing tool for multithreaded programs,” in Proc. ACM SIGPLAN
Notices, vol. 47, no. 10, pp. 485–502, 2012.

[8] B. Wester, D. Devecsery, P. M. Chen, J. Flinn, and S. Narayanasamy,
“Parallelizing data race detection,” ACM SIGARCH Comput. Archit. News,
vol. 41, no. 1, pp. 27–38, 2013.

[9] J. Alonso, M. Grottke, A. P. Nikora, and K. S. Trivedi, “An empirical
investigation of fault repairs and mitigations in space mission system
software,” in Proc. 43rd Annu. IEEE/IFIP Int. Conf. Dependable Syst.
Netw., 2013, pp. 1–8.

[10] M. Grottke and K. S. Trivedi, “Fighting bugs: Remove, retry, replicate,
and rejuvenate,” Computer, vol. 40, no. 2, pp. 107–109, 2007.

[11] K. S. Trivedi, M. Grottke, and E. Andrade, “Software fault mitigation and
availability assurance techniques,” Int. J. Syst. Assurance Eng. Manage.,
vol. 1, no. 4, pp. 340–350, 2010.

[12] M. Grottke, D. S. Kim, R. Mansharamani, M. Nambiar, R. Natella, and
K. S. Trivedi, “Recovery from software failures caused by mandelbugs,”
IEEE Trans. Rel., vol. 65, no. 1, pp. 70–87, Mar. 2016.

[13] K. S. Trivedi and A. Bobbio, Reliability and Availability Engineering:
Modeling, Analysis, and Applications. Cambridge, U.K.: Cambridge Univ.
Press, 2017.

[14] G. A. Hoffmann, K. S. Trivedi, and M. Malek, “A best practice guide to
resources forecasting for the apache webserver,” in Proc. IEEE 12th Pac.
Rim Int. Symp. Dependable Comput., 2006, pp. 183–193.

[15] K. Trivedi, D. Wang, D. J. Hunt, A. Rindos, W. E. Smith, and B. Vashaw,
“Availability modeling of sip protocol on IBM WebSphere,” in Proc. 14th
IEEE Pac. Rim Int. Symp. Dependable Comput., 2008, pp. 323–330.

[16] R. Matias, Jr., K. S. Trivedi, and P. R. Maciel, “Using accelerated life tests
to estimate time to software aging failure,” in Proc. IEEE 21st Int. Symp.
Softw. Rel. Eng., 2010, pp. 211–219.

[17] R. Matias, P. A. Barbetta, K. S. Trivedi, and P. J. Freitas Filho, “Accelerated
degradation tests applied to software aging experiments,” IEEE Trans.
Rel., vol. 59, no. 1, pp. 102–114, Mar. 2010.

[18] J. Zhao, Y. Jin, K. S. Trivedi, and R. Matias, Jr., “Injecting memory leaks
to accelerate software failures,” in Proc. IEEE 22nd Int. Symp. Softw. Rel.
Eng., 2011, pp. 260–269.

[19] W. B. Nelson, Accelerated Testing: Statistical Models, Test Plans, and
Data Analysis, vol. 344. New York, NY, USA: Wiley, 2009.

[20] W. Q. Meeker and L. A. Escobar, Statistical Methods for Reliability Data.
New York, NY, USA: Wiley, 2014.

[21] D. C. Montgomery, Design and Analysis of Experiments. New York, NY,
USA: Wiley, 2017.

[22] M. Kifer and S. Smolka, Introduction to Operating System Design and
Implementation: The OSP 2 Approach. New York, NY, USA: Springer,
2007.

[23] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating Systems:
Three Easy Pieces, vol. 151. Wisconsin, MI, USA: Arpaci-Dusseau Books,
2014.

[24] R. Bryant, O. David Richard, and O. David Richard, Computer Systems:
A Programmer’s Perspective, vol. 281. Upper Saddle River, NJ, USA:
Prentice-Hal, 2003.

[25] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: A com-
prehensive study on real world concurrency bug characteristics,” ACM
SIGPLAN Notices, vol. 43, no. 3, pp. 329–339, 2008.

[26] D. G. Cavezza, R. Pietrantuono, J. Alonso, S. Russo, and K. S. Trivedi,
“Reproducibility of environment-dependent software failures: An expe-
rience report,” in Proc. IEEE 25th Int. Symp. Softw. Rel. Eng., 2014,
pp. 267–276.

[27] R. V. Lenth, “Quick and easy analysis of unreplicated factorials,” Techno-
metrics, vol. 31, no. 4, pp. 469–473, 1989.

[28] A. Goscinski, M. Brock, and P. C. Church, “High performance computing
clouds,” Cloud Computing: Methodology, Systems and Applications. Boca
Raton, FL, USA: CRC Press, 2012, pp. 221–259.

[29] P. E. McKight and and J. Najab, “Kruskal–Wallis test,” Corsini Encyclo-
pedia of Psychology. New York, NY, USA: Wiley, 2010.

[30] A. J. Dobson and A. Barnett, An Introduction to Generalized Linear
Models. Boca Raton, FL, USA: CRC Press, 2008.

[31] R. Corporation, “Accelerated life testing reference,” 2015. [Online].
Available: http://www.synthesisplatform.net/references/Accelerated_
Life_Testing_Reference.pdf

[32] W. Mendenhall, R. J. Beaver, and B. M. Beaver, Introduction to Probability
and Statistics. Boston, MA, USA: Cengage Learning, 2012.

[33] S. Park, R. W. Vuduc, and M. J. Harrold, “Falcon: Fault localization in
concurrent programs,” in Proc. 32nd ACM/IEEE Int. Conf. Softw. Eng.,
2010, vol. 1, pp. 245–254.

[34] S. Khurshid, “Software-artifact infrastructure repository,” Jan. 2018. [On-
line]. Available: http://sir.unl.edu/content/sir.php

[35] E. Schoenfelder, “Bug #38691 segfault/abort in update . . . join
while flush tables with read lock,” Aug. 2008. [Online]. Available:
https://bugs.mysql.com/bug.php?id=38691

[36] N. Jalbert, C. Pereira, G. Pokam, and K. Sen, “Radbench: A concurrency
bug benchmark suite,” HotPar, vol. 11, pp. 2–2, 2011.

[37] P. Thomson, A. F. Donaldson, and A. Betts, “Concurrency testing using
schedule bounding,” ACM SIGPLAN Notices, vol. 49, no. 8, pp. 15–28,
2014.

[38] P. Menage, “cgroup documentation,” 2004. [Online]. Available:
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

[39] Dormando, “Memcached configuring server,” 2016. [Online]. Available:
https://github.com/memcached/memcached/wiki/ConfiguringServer

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on February 24,2022 at 14:09:38 UTC from IEEE Xplore. Restrictions apply.

http://www.synthesisplatform.net/references/Accelerated_Life_Testing_Reference.pdf
http://www.synthesisplatform.net/references/Accelerated_Life_Testing_Reference.pdf
http://sir.unl.edu/content/sir.php
https://bugs.mysql.com/bug.php?id=38691
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://github.com/memcached/memcached/wiki/ConfiguringServer

QIU et al.: STRESS TESTING WITH INFLUENCING FACTORS TO ACCELERATE DATA RACE SOFTWARE FAILURES 21

[40] P. McCullagh, “Generalized linear models,” Eur. J. Oper. Res., vol. 16,
no. 3, pp. 285–292, 1984.

[41] T. W. Anderson and D. A. Darling, “A test of goodness of fit,” J. Amer.
Statist. Assoc., vol. 49, no. 268, pp. 765–769, 1954.

[42] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, “A ran-
domized scheduler with probabilistic guarantees of finding bugs,” ACM
SIGPLAN Notices, vol. 45, no. 3, pp. 167–178, 2010.

[43] S. Chandra and P. M. Chen, “Whither generic recovery from application
faults? A fault study using open-source software,” in Proc. Int. Conf.
Dependable Syst. Netw., 2000, pp. 97–106.

[44] D. Cotroneo, R. Pietrantuono, S. Russo, and K. Trivedi, “How do bugs
surface? A comprehensive study on the characteristics of software bugs
manifestation,” J. Syst. Softw., vol. 113, pp. 27–43, 2016.

[45] H. Mushtaq, Z. Al-Ars, and K. Bertels, “Survey of fault tolerance tech-
niques for shared memory multicore/multiprocessor systems,” in Proc.
IEEE 6th Int. Des. Test Workshop, 2011, pp. 12–17.

[46] F. Ye and T. Kelly, “Component failure mitigation according to fail-
ure type,” in Proc. 28th Annu. Int. Comput. Softw. Appl. Conf., 2004,
pp. 258–264.

[47] A. Löfwenmark and S. Nadjm-Tehrani, “Fault and timing analysis in
critical multicore systems—A survey with an avionics perspective,” J.
Syst. Archit., vol. 87, pp. 1–11, 2018.

Kun Qiu received the B.S. degree in automation from
the Hefei University of Technology, Hefei, China, in
2013. He is currently working toward a Ph.D. degree
in control science and engineering with the School
of Automation Science and Electrical Engineering,
Beihang University, Beijing, China.

His research interests are in software dependability
analysis and metamorphic testing.

Zheng Zheng (SM’18) received the Ph.D. degree
in computer software and theory from the Chinese
Academy of Science, Beijing, China, in 2006.

In 2014, he was a Research Scholar with the
Department of Electrical and Computer Engineer-
ing, Duke University, Durham, NC, USA. He is cur-
rently a Professor in Control Science and Engineering
with Beihang University, Beijing, China. His research
interests include software dependability, unmanned
aerial vehicle path planning, artificial intelligence ap-
plications, and software fault localization.

Kishor S. Trivedi (LF’17) received the B.Tech. de-
gree in electrical engineering from the Indian Insti-
tute of Technology Mumbai, Mumbai, India, in 1968,
and the M.S. and Ph.D. degrees in computer science
from the University of Illinois at Urbana-Champaign,
Champaign, IL, USA, in 1972 and 1974, respectively.

He is currently the Fitzgerald Hudson Chair with
the Department of Electrical and Computer Engi-
neering, Duke University, Durham, NC, USA. His
research interests are in reliability, availability, per-
formance and survivability of computer and commu-

nication systems and in software dependability.
Mr. Trivedi is a Golden Core Member of the IEEE Computer Society. He

was the recipient of the IEEE Computer Society Technical Achievement Award.

Beibei Yin received the Ph.D. degree in control
science and engineering from Beihang University,
Beijing, China, in 2010.

She was a Research Scholar with the Department
of Electrical and Computer Engineering, Duke Uni-
versity, Durham, NC, USA, in 2015. She is currently
a Lecturer with Beihang University, China. Her re-
search interests include software testing, software re-
liability, and software cybernetics.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on February 24,2022 at 14:09:38 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

