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Abstract—Metamorphic Relations (MRs) play a key role in determining the fault detection capability of Metamorphic Testing (MT). As
human judgement is required for MR identification, systematic MR generation has long been an important research area in MT.
Additionally, due to the extra program executions required for follow-up test cases, some concerns have been raised about MT
cost-effectiveness. Consequently, the reduction in testing costs associated with MT has become another important issue to be
addressed. MR composition can address both of these problems. This technique can automatically generate new MRs by composing
existing ones, thereby reducing the number of follow-up test cases. Despite this advantage, previous studies on MR composition have
empirically shown that some composite MRs have lower fault detection capability than their corresponding component MRs. To
investigate this issue, we performed theoretical and empirical analyses to identify what characteristics component MRs should possess
so that their corresponding composite MR has at least the same fault detection capability as the component MRs do. We have also
derived a convenient, but effective guideline so that the fault detection capability of MT will most likely not be reduced after
composition.

Index Terms—Metamorphic testing, metamorphic relation, metamorphic relation composition, test oracle, fault detection capability.

F

1 INTRODUCTION

T ESTING is a prominent technique for software verifi-
cation [1], [2]. This technique often requires the pres-

ence of a test oracle (or simply an oracle, which refers to
some mechanism for the tester to verify the correctness
of the software output). However, in many situations such
as testing a complex numerical algorithm, the ”expected”
correct software output (i.e., the oracle) is often unavailable
or infeasible to determine. This problem is known as the
oracle problem, which refers to the situation where either an
oracle does not exist, or an oracle does exist but cannot be
practically used, possibly due to resource constraints.

Some approaches or techniques have been proposed to
alleviate the oracle problem in testing [3]. Among them,
metamorphic testing (MT) has been demonstrated by var-
ious studies to be a lightweight, yet effective technique.
When applying MT, the necessary properties of the software
under test are firstly identified from various sources, such as
the software specification. These properties are expressed in
the form of relations among software inputs and outputs,
formally known as metamorphic relations (MRs). Since its
first publications in 1998 [4], [5], MT has been repeatedly
found to be effective at alleviating the oracle problem in
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software testing across many different application domains
and platforms, including biomedical applications [6], [7],
[8], web services [9], [10], embedded systems [11], [12],
component-based software [13], compilers [14], [15], [16],
machine learning classifiers [17], [18], [19], [20], [21], on-
line search engines [22], [23], [24], image processing [25],
artificial intelligence (AI) systems [26], and autonomous car
systems [27], [28], [29].

Although MT has demonstrated success in alleviating
the oracle problem, its application consumes additional
testing resources because it involves multiple program ex-
ecutions. In reality, due to testing resource constraints,
software testers may be particularly concerned with the
cost-effectiveness of testing, which can be roughly defined
as the ratio of the number of faults detected to the num-
ber of program executions. Regarding this issue, some
researchers [30], [31] have proposed increasing the cost-
effectiveness of MT through MR composition, so that the
number of MRs used for testing can be reduced. This was
originally proposed to generate new MRs from existing
ones [30], [31]. Since this can reduce the number of MRs,
it will also reduce the number of program executions, and
thereby reduce testing costs. However, whether or not MR
composition can increase the cost-effectiveness of MT also
depends on the answer to the question: ”How does the fault
detection capability of the composite MR compare with that of its
corresponding component MRs?” In this paper, we refer to a
newly-constructed MR after composition as a composite MR,
and the MRs from which it is constructed as component MRs.

Up to now, we have found mixed answers to our ques-
tion. For example, Dong et al. [30] reported that the fault
detection capability remains largely unchanged after MR
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composition. On the other hand, Liu et al. [31] reported
that the fault detection capability may be reduced after
MR composition, but without mentioning: (a) under what
situations the fault detection capability will be reduced; or
(b) how to avoid such a reduction happening.

In view of the above mixed findings, this paper aims
to answer the question: In what situations is testing with
a composite MR more cost-effective than testing with
its component MRs? Our analysis has discovered some
desirable characteristics in the component MRs, which can
be easily verified by the tester, that indicate whether or
not the composite MR should be used instead for testing.
These characteristics are defined in terms of the bijectiv-
ity/injectivity of the input/output mappings of the com-
ponent MRs. In addition to formally proving the validity of
these characteristics, we have also checked their practicality
through an empirical study. Furthermore, we propose a use-
ful guideline for a tester to better decide whether or not to
use MR composition. In brief, given a pair of metamorphic
relations MRx and MRy that fall into a special class of
MRs (as defined in Definition 1 of Section 3.1), where MRx

is composable with MRy , they should be used to form a
composite MR if both of the following conditions are met:
(a) the output mapping of MRx is injective; and (b) the input
mapping of MRy is a bijective mapping from the source
inputs of MRy to the source inputs of MRx.

The rest of this paper is structured as follows. Section
2 outlines the concept of MT and gives the motivation for
this study. Section 3 provides the basic concepts and ter-
minology, which facilitate the subsequent discussion of our
theoretical analysis of MR composition, which is discussed
in detail in Section 4. Section 5 complements Section 4 by
discussing our empirical analysis of MR composition. Based
on the analyses in Sections 4 and 5 , Section 6 presents our
general guideline for MR composition and an analysis of its
applicability. This section also discusses some related works.
Finally, Section 7 summarizes and concludes the paper.

2 BACKGROUND

2.1 Metamorphic Testing (MT)

MT is a lightweight, elegant, and effective technique for
alleviating the oracle problem. An intuition underlying
MT is as follows: Even if we cannot verify the correctness
of an individual output, it may still be possible to use the
relations among multiple inputs and outputs for program
verification.

Example 1 (Shortest Path in an Undirected Graph):
Consider an algorithm f for computing the length of the
shortest path between any two nodes (a and b) in an undi-
rected graph G. Let: (i) P denote an implementation of f ;
(ii) P [G, a, b] denote the length of the shortest path between
a and b in G, which is computed by P ; and (iii) f(G, a, b)
denote the expected (and correct) length of the shortest path.
When G contains many nodes and edges, for any a and b
in G, it is resource-intensive and time-consuming to com-
pute f(G, a, b) in a brute force manner for comparing with
P [G, a, b]. This is because the computational complexity is
of factorial order of the number of nodes in G.

With MT, this tedious verification task can be allevi-
ated by checking, for example, two properties, which are
expressed as metamorphic relations MR1 and MR2, as
follows:
• MR1: If a and b in G are swapped, then f(G, a, b) =
f(G, b, a);

• MR2: If G′ is a permutation of G with a′ and b′ being
the permuted counterparts of a and b, respectively, then
f(G′, a′, b′) = f(G, a, b).

With respect to MR1 and MR2, we should have
P [G, a, b] = P [G, b, a] and P [G, a, b] = P [G′, a′, b′].
Otherwise, we can conclude that P is faulty. �

Since its first publicaton in 1998 [4], [5], MT has been
successfully applied across a wide range of application
domains and platforms. Recently, funded by the UK En-
gineering and Physical Sciences Research Council and the
TETRACOM (TEchnology TRAnsfer in COMputing sys-
tems) EU project, a group of academics and researchers from
the Department of Computing at Imperial College London
(ICL) established GraphicsFuzz — a spinout company from
ICL. GraphicsFuzz [16] combined fuzzing and MT to test
graphics drivers. The company was acquired by Google in
2018.

A core concept of MT is the MR, which is a necessary
property of a targeted function f . An MR of f is a relation
over a sequence of two or more inputs 〈t1, t2, ..., tn〉 and
their corresponding outputs 〈f(t1), f(t2), ..., f(tn)〉, where
n ≥ 2. An MR can be written as R ⊆ Xn × Y n, where
Xn × Y n are Cartesian products of the n inputs and their
corresponding n outputs. Generally, an MR can be repre-
sented as:

R(t1, t2, ..., tn, f(t1), f(t2), . . . , f(tn)).

Consider, for instance, MR1 in Example 1, which can be
rewritten as:

R((G, a, b), (G, b, a), f(G, a, b), f(G, b, a)).

Give any MR, there exists a k, where 1 ≤ k < n, such
that:

• t1, t2, . . . , tk denote the source inputs;
• f(t1), f(t2), . . . , f(tk) denote the source outputs;
• tk+1, tk+2, . . . , tn denote the follow-up inputs;
• f(tk+1), f(tk+2), . . . , f(tn) denote the follow-up out-

puts.

Let P be an implementation of f . With respect to an MR,
applying MT typically proceeds as follows:

(1) Replace f with P in R.
(2) Execute P on a sequence of source inputs 〈t1, t2,

. . . , tk〉 to obtain the corresponding sequence of source
outputs 〈P [t1], P [t2], . . . , P [tk]〉.

(3) Generate a sequence of follow-up inputs 〈tk+1, tk+2,
. . . , tn〉 in accordance with R.

(4) Execute P on the sequence of follow-up inputs
to obtain the corresponding sequence of outputs
〈P [tk+1], P [tk+2], . . . , P [tn]〉.

(5) Compare the two sets of execution results with refer-
ence to R. If R is violated, then P is faulty.

The above steps are repeated for every identified MR.
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2.2 MR Composition

The composition technique was originally proposed as a
method of generating new MRs from existing ones [30], [31].
Example 2 explains the basic concept of MR composition.

Example 2 (MR Composition): Consider the following
two MRs, corresponding to two well-known properties of
the sine function:

• MR1: If x′ = −x, then sin(x′) = −sin(x);
• MR2: If x′ = x+ 2π, then sin(x′) = sin(x).

We can compose MR1 and MR2 together to form a
composite metamorphic relation MR12, that is MR1(MR2).
MR12 is formally expressed as: If x′ = −(x + 2π), then
sin(x′) = −sin(x). �

Example 2 above shows that MR composition can gen-
erate new MRs from existing ones. If we only generate test
cases from MR12 (and ignore MR1 and MR2) for testing, the
testing cost is obviously reduced. In Example 2, testing with
both MR1 and MR2 involves three program executions:
one for sin(x), one for sin(x + 2π), and one for sin(−x).
On the other hand, testing with MR12 only involves two
executions: one for sin(x) and another for sin(−(x + 2π)).
Thus, if we only consider the testing cost, testing with MR12

alone is definitely preferable to testing with both MR1 and
MR2. However, beyond savings in testing costs, we should
also compare the fault detection capability of MR12 with
that of MR1 and MR2. This leads to the research question of
this paper: (RQ) Will testing a composite MR (e.g., MR12MR12MR12)
have the same chance of detecting faults when compared
with testing its component MRs (e.g., MR1MR1MR1 and MR2MR2MR2)?

Previous studies on MR composition do not provide a
definite answer to RQ. For instance, the case study reported
by Dong et al. [30] has provided a ”Yes” answer to RQ. On
the other hand, the study by Liu et al. [31] reported that
this is not necessarily the case. To date, to the best of our
knowledge, no systematic studies have been conducted to
address our RQ. In view of this, we perform a theoretical
analysis with the intention of providing a definite answer.

3 IMPORTANT CONCEPTS AND TERMINOLOGY

Before we present our theoretical analysis, we first formalize
some important definitions and concepts.

3.1 Metamorphic Relations (MRs)

In this paper, without loss of generality, we assume that
the targeted function (or algorithm) involves one single
input and one single output. However, generalizing our
results to functions with multiple inputs and outputs is
straightforward.

Because composing any two MRs into their correspond-
ing composite MR is not always feasible, our work only
considers the special class of MRs defined in this subsection.
Before formally presenting this special class of MRs, let us
revisit some basic concepts of mapping.

Basic Concepts of a Function

Let f : A→ B be a function (or mapping) from A to B.
Here:
• A is referred to as the domain of f ;
• B is referred to as the codomain of f ;
• If f(a) = b, then b is referred to as the image of a,

and a is referred to as the preimage of b;
• f is said to be injective if ∀ a, a′ ∈ A, f(a) = f(a′)

implies a = a′;
• f is said to be surjective if ∀ b ∈ B, ∃ a ∈ A such

that f(a) = b;
• f is said to be bijective if f is both injective and

surjective;
• For any S ⊆ A, f(S) denotes the set of the images

of elements in S under the function f , such that:

f(S) =
⋃
s∈S
{f (s)};

• f(A) is referred to as the range of f , and f(A) ⊆ B.

The specific class of MRs considered in our study is
defined as follows:

Definition 1. A Special Class of Metamorphic Rela-
tions (MRs)

Let
• f : T → R be a targeted function;
• I : T → T ′ (where T ⊆ T , and T ′ = I(T ) ⊆ T )

be a mapping that takes in a source input and
generates a follow-up input for f ;

• O : R → R′ (where R = f(T ) and R′ = O(R) ⊆
R) be a mapping that takes in a source output (i.e.,
f(t)) and generates a follow-up output.

A metamorphic relation MR is a necessary property of
f . MR is formally expressed as follows:

∀t ∈ T (f (I (t)) = O (f (t))) .

In the above:
• T is the set of source inputs for MR;
• I and O are the input and output mappings, respec-

tively, of MR;
• t is a source input of MR, where t ∈ T ;
• I(t) is the follow-up input corresponding to t;
• f(t) is the source output corresponding to t;
• f(I(t)) is the follow-up output corresponding to t.

Definition 1 has two assumptions: (a) an MR involves
two separate mappings (the input mapping I and the out-
put mapping O); and (b) the input and output mappings
involve a single input and a single output, respectively. We
argue that MRs of this special class are commonly observed
across different application domains. Our argument will be
verified in response to Question Q1 in Section 6.2 .

Consider Example 1 again. Let T and R denote the
domain and codomain of f , respectively. Furthermore, let
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t denote an input of f . Then, for any t ∈ T , t is of the form
of 〈G, a, b〉. Additionally,
• MR1: ∀ t ∈ T1 (f(I1(t)) = O1(f(t))), where T1 = T ,
I1 (〈G, a, b〉) = 〈G, b, a〉, and O1(x) = x.

• MR2: ∀ t ∈ T2 (f(I2(t)) = O2(f(t))), where T2 = T ,
I2(·) is a permutation function that takes in 〈G, a, b〉
and permutates G, a, and b according to a certain
pattern, such that I2 (〈G, a, b〉) = 〈G′, a′, b′〉, where G′

is the permuted G, a′ and b′ are the counterparts of a
and b, respectively, and O2(x) = x.

Next, consider Example 2. Let T and R be the domain
and codomain of the sine function, respectively; we write
sine as f and t as the input of f . Then:
• MR3: ∀ t ∈ T3 (f(I3(t)) = O3(f(t))), where T3 = T ,
I3(t) = −t, and O3(x) = −x;

• MR4: ∀ t ∈ T4 (f(I4(t)) = O4(f(t))), where T4 = T ,
I4(t) = t+ 2π, and O4(x) = x.

3.2 Composable MR and Composite MR
Below we first define a composable MR, which will facilitate
the definition of a composite MR.

Definition 2. Composable MR

Let
• f : T → R be a targeted function;
• MRx and MRy be two MRs of f .

MRx is said to be composable with MRy if:
• Iy(Ty) ⊆ Tx, that is, the range of Iy is a subset of

the domain of Ix;
• Oy(Ry) ⊆ Rx (where Rx = f(Tx) and Ry =
f(Ty)), that is, the range of Oy is a subset of the
domain of Ox.

For the rest of the paper, we use subscripts to link an MR
and its related components. For instance, in Definition 2
above, Tx, Ix, and Ox denote the set of source inputs, in-
put mapping, and output mapping corresponding to MRx,
respectively.

Refer to Example 1. It can be deduced that:

(a) I1(T1) = T1 = T2 because (i) I1(T1) = T1 and (ii)
T1 = T2 = T ;

(b) O1(R1) = R1 = R2 because (i) R1 = R2 as f(T1) =
f(T2) and (ii) O1(R1) = R1 because O1(x) = x;

(c) I2(T2) = T2 = T1 because (i) I2(T2) = T2 as I2 is a
permutation function and (ii) T1 = T2 = T ;

(d) O2(R2) = R2 = R1 because (i) R2 = R1 as f(T2) =
f(T1) and (ii) O2(R2) = R2 as we have O2(x) = x.

With (a) and (b), it follows after Definition 2 that MR2

is composable with MR1. Similarly, with (c) and (d), we
conclude that MR1 is composable with MR2. It should,
however, be noted that for any two metamorphic relations
MRx and MRy , if MRx is composable with MRy , it is not
necessary that MRy is also composable with MRx.

We next formally define the construction of a composite
MR:

Definition 3. Composite MR and Component MR

Let
• f : T → R be a targeted function;
• MRx and MRy be two MRs of f ;
• MRx be composable with MRy .

The composite MR (denoted by MRxy), formed by com-
posing MRx with MRy , is a necessary property of f .
MRxy is formally expressed as follows:

∀t ∈ Txy (f (Ixy (t)) = Oxy (f (t))) ,

where
• Txy = Ty ;
• Ixy(t) = (Ix ◦ Iy)(t) = Ix(Iy(t));
• Oxy(f(t)) = (Ox ◦Oy)(f(t)) = Ox(Oy(f(t))).

We write MRxy = MRx ◦ MRy or MRx(MRy). Also,
we refer to MRx and MRy as the component metamorphic
relations of MRxy .

Refer to Example 2. It is straightforward to conclude that
MR1 and MR2 are composable with each other according to
Definition 2 . We write f(t) as sin(t). Then, with respect to
MR1 and MR2, there are two possible composite MRs.
• MR12 = MR1(MR2) = MR1 ◦MR2:

∀ t ∈ T12 (f(I12(t)) = O12(f(t))) ,

where T12 = T2 = T , I12(t) = I1(I2(t)) = −(t + 2π)
and O12(x) = O1(O2(x)) = −x.

• MR21 = MR2(MR1) = MR2 ◦MR1:

∀ t ∈ T21 (f(I21(t)) = O21(f(t))) ,

where T21 = T1 = T , I21(t) = I2(I1(t)) = −t+2π, and
O21(x) = O2(O1(x)) = −x.

It should be noted that, when applying MT, the tester
is not required to explicitly specify the composite MR in
the format above: The task of composing composable MRs
can be automated through programming in accordance with
Definition 3 . This automation can be implemented as fol-
lows. Two test scripts can be written — one calling function
Iy and the other calling function Ix. If t is an input to Iy ,
then the returned value from Iy is used as an input to Ix.
In this way, t and the returned value from Ix form a pair
of source and follow-up inputs for the composite MRxy .
Similarly, the pair of source and follow-up outputs for MRxy

could be obtained by first executing a test script to call the
function Oy , followed by executing another test script to call
the function Ox. Here, the functions Ix, Iy , Ox, and Oy are
implemented according to MRx and MRy .

When composing more than two MRs, the resultant
composite MR can also be automatically obtained by re-
cursively applying Definition 3 . Since I and O are map-
pings, the composition of Is and the composition of Os are
associative, that is: Ixyz = (Ix ◦ Iy) ◦ Iz = Ix ◦ (Iy ◦ Iz)
and Oxyz = (Ox ◦ Oy) ◦ Oz = Ox ◦ (Oy ◦ Oz). Since
an MR is defined in terms of its own I and O, therefore,
the composition of MRs is also associative. For example,
MRxyz = (MRx ◦MRy)◦MRz = MRx ◦ (MRy ◦MRz). The
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order of composition, however, is important. For instance,
MRxyz may not be the same as MRyxz . In other words, the
composition of MRs is not commutative.

3.3 Evaluation of Fault Detection Capability

The evaluation and comparison of the fault detection
capabilities of two different MRs (regardless of whether or
not they are composite) requires some metric. We defined
two — one qualitative, and one quantitative — to use in our
study. To facilitate the definition of these two metrics, we
first present the following definition:

Definition 4. Satisfiability of a Set of Source Inputs
for an MR

Let
• f be a targeted function;
• P be an implementation of f ;
• MR be a metamorphic relation of f with T , I , and
O being its set of source inputs, input mapping,
and output mapping, respectively;

• S be a nonempty subset of T .
After executing all elements of S with P ,
• S is said to satisfy MR, if all elements of S satisfy
MR, that is,

∀t∈S (O (P [t]) = P [I (t)]) ;

• S is said to violate MR, if all elements of S violate
MR, that is,

∀t∈S (O (P [t]) 6= P [I (t)]) .

With Definition 4 , a qualitative metric is defined for
measuring the fault detection capability of an MR as follows:

Definition 5. Satisfiability of an MR

Let
• f be a targeted function;
• P be an implementation of f ;
• MR be a metamorphic relation of f with T being

its set of source inputs.

With respect to P , if T satisfies MR, MR is said to be
satisfiable; otherwise, MR is said to be violative.

Let T v denote the set of all elements in T that violate
MR. In this case, T v is referred to as the set of violative
source inputs of MR. Obviously, T v = ∅, iff MR is
satisfiable.

In Definition 5 above, given an implementation P and
an MR, it is equivalent to say that P violates (or satisfies)
the MR, when the MR is violative (or satisfiable).

Together Definitions 4 and 5 allow us to define the fol-
lowing quantitative metric for measuring the fault detection
capability of an MR:

Definition 6. Fault Detection Rate of an MR

Let
• f be a targeted function;
• P be an implementation of f ;
• MR be a metamorphic relation of f with T being its

set of source inputs and T v being its set of violative
source inputs.

Let θ denote the fault detection rate of MR with respect
to P . Then, θ is defined as follows:

θ =
|T v|
|T |

,

where |T v| and |T | denote the sizes of T v and T ,
respectively.

The satisfiability of an MR (Definition 5 ) indicates
whether or not a program under test can be revealed as
faulty by this MR. Furthermore, the fault detection rate
(Definition 6 ) indicates how likely it is that an MR will reveal
a fault in P with only one random source input. Larger fault
detection rates indicate higher fault detection capabilities.

4 THEORETICAL ANALYSIS OF FAULT DETECTION
CAPABILITY

Given an implementation P , MRx, and MRy , there are four
possible scenarios:
(1) Both MRx and MRy are satisfiable;
(2) MRx is satisfiable and MRy is violative;
(3) MRx is violative and MRy is satisfiable;
(4) Both MRx and MRy are violative.

For each of the above scenarios, we analyze the fault
detection capability of MRxy .

4.1 Scenario 1
In this scenario, both MRx and MRy are satisfiable, that is,
θx = θy = 0. Although we intuitively expect θxy to be 0,
let us formally prove it (Theorem 1 ). This proof needs the
following lemma.

Lemma 1.

Let
• f be a targeted function;
• P be an implementation of f ;
• MRx and MRy be two MRs of f ;
• MRx be composable with MRy ;
• Sy be a nonempty subset of Ty .

If Sy satisfies MRy and Iy(Sy) satisfies MRx, then Sy

satisfies MRxy .

Proof (Lemma 1). Assume that Sy satisfies MRy and Iy(Sy)
satisfies MRx. It follows after Definition 4 that

∀ t ∈ Sy (Oy (P [t]) = P [Iy (t)]) , (1)
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and
∀ t′ ∈ Iy (Sy) (Ox (P [t′]) = P [Ix (t

′)]) . (2)

By the definition of Iy(Sy), for any t′ ∈ Iy(Sy), there exists
a t ∈ Sy such that t′ = Iy(t); and for any t ∈ Sy , there exists
a t′ ∈ Iy(Sy) such that t′ = Iy(t). Therefore, Eq. 2 can be
rewritten as follows:

∀ t ∈ Sy (Ox (P [Iy (t)]) = P [Ix (Iy (t))]) . (3)

Immediately after Eqs. 1 and 3 , we have

∀ t ∈ Sy (Ox (Oy (P [t])) = P [Ix (Iy (t))]) . (4)

It follows after Definition 4 that Sy satisfies MRxy . �
Now we are ready to present Theorem 1 and its proof.

Theorem 1.

Let
• f be a targeted function;
• P be an implementation of f ;
• MRx and MRy be two MRs of f ;
• MRx be composable with MRy .

If MRx and MRy are satisfiable, then their composite meta-
morphic relation, MRxy , is also satisfiable.

Proof (Theorem 1). Assume that MRx and MRy are both satis-
fiable. From Definition 5 , we immediately have Tx satisfies
MRx and Ty satisfies MRy . Since MRx is composable with
MRy , it follows after Definition 2 that Iy(Ty) ⊆ Tx. Since Tx
satisfies MRx, Iy(Ty) also satisfies MRx.

It follows from Lemma 1 that, since Ty satisfies MRy and
Iy(Ty) satisfies MRx, Ty satisfies MRxy . Because Txy = Ty
(Definition 3), therefore, it follows after Definition 5 that
MRxy is satisfiable, that is, θxy = 0. �

Implication: Theorem 1 states that, if an implementation
P under test does not violate any two component MRs
(MRx and MRy), P will also not violate any composite MR
constructed from MRx and MRy .

4.2 Scenario 2
In this scenario, MRx is satisfiable (θx = 0) and MRy

is violative (θy > 0). Before analyzing the fault detection
capability of MRxy , we first introduce the following lemma
to facilitate the proof of Theorem 2 .

Lemma 2.

Let
• f be a targeted function;
• P be an implementation of f ;
• MRx and MRy be two MRs of f ;
• MRx be composable with MRy ;
• Sy be a nonempty subset of Ty .

Suppose that Sy violates MRy and Iy(Sy) satisfies

MRx. If Ox is an injective mapping, then Sy violates
MRxy .

Proof (Lemma 2). Since Sy violates MRy , it follows after
Definition 4 that

∀ t ∈ Sy (Oy (P [t]) 6= P [Iy (t)]) . (5)

Because Iy(Sy) satisfies MRx, it follows after Definition 4
that

∀ t′ ∈ Iy(Sy) (Ox (P [t′]) = P [Ix (t
′)]) . (6)

By the definition of Iy(Sy), for any t′ ∈ Iy(Sy), there exists
a t ∈ Sy such that t′ = Iy(t); and for any t ∈ Sy , there exists
a t′ ∈ Iy(Sy) such that t′ = Iy(t). Therefore, Eq. 6 can be
rewritten as follows:

∀ t ∈ Sy (Ox (P [Iy (t)]) = P [Ix (Iy (t))]) . (7)

Assume that Ox is an injective mapping. Immediately after
Eqs. 5 and 7 , we have

∀ t ∈ Sy (Ox (Oy (P [t])) 6= P [Ix (Iy (t))]) . (8)

Therefore, Sy violates MRxy . �
With Lemma 2 , we can now introduce Theorem 2 and

its proof.

Theorem 2.

Let
• f be a targeted function;
• P be an implementation of f ;
• MRx and MRy be two MRs of f ;
• MRx be composable with MRy .

Suppose that MRx is satisfiable (θx = 0) and MRy is
violative (θy > 0). IfOx is an injective mapping, then MRxy

is violative and θxy = θy .

Proof (Theorem 2). To determine θxy , we need to know the set
of source inputs (Txy) and the set of violative source inputs
(T v

xy) of MRxy . It follows from Definition 3 that Txy = Ty .
In what follows, we will prove that, if Ox is an injective
mapping, then T v

xy = T v
y .

Since MRy is violative, we have Ty = T v
y ∪ T v

y
1 ,

where T v
y 6= ∅. Since MRx is composable with MRy , we

have Iy(Ty) ⊆ Tx. In turn, we have Iy(T
v
y ) ⊆ Tx and

Iy(T v
y ) ⊆ Tx. Since MRx is satisfiable, it follows after

Definition 5 that Tx satisfies MRx. Therefore, we have

Iy(T
v
y ) satisfies MRx; (i)

and

Iy(T v
y ) satisfies MRx, if Iy(T v

y ) 6= ∅. (ii)

Next, let us assume that Ox is injective. Since we have (i)
above and T v

y violates MRy , it follows from Lemma 2 that

1. In this paper, we use T v to denote the complementary set of T v

over T . For instance, T v
y is the complementary set of T v

y over Ty .
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T v
y violates MRxy . (iii)

Furthermore, we have

T v
y ⊆ T v

xy, (iv)

because T v
xy contains all the elements that violate MRxy .

Next, we consider the following two exhaustive cases:

Case (a): T v
y 6= ∅.

Since we have (ii) and T v
y satisfies MRy , it follows from

Lemma 1 that T v
y satisfies MRxy . Furthermore, since we

have (iii) and Txy = Ty = T v
y ∪ T v

y , therefore, we have
T v
xy = T v

y .

Case (b): T v
y = ∅.

Since we have (iv), T v
xy ⊆ Txy (where Txy = Ty), and

Ty = T v
y ∪ T v

y = T v
y , therefore, we have T v

xy = T v
y .

In view of the above two cases, regardless of whether
or not T v

y is empty, we have T v
xy = T v

y . Then, it follows after
Definition 6 that,

θxy =
|T v

xy|
|Txy|

=
|T v

y |
|Ty|

= θy > 0.

In other words, MRxy is violative. �

Implication: Theorem 2 gives a sufficient condition for
MRxy and MRy having the same fault detection capability
if MRx is satisfiable.

A previous study [31] reported that composing some
”loose” MRs may result in a composite MR with a lower
fault detection capability. However, that study has not for-
mally defined the meaning of ”loose” MRs. By means of
our theoretical analysis, we found that a ”loose” MR in fact
refers to one whose output mapping is not injective.

4.3 Scenario 3

In this scenario, MRx is violative (θx > 0) and MRy is
satisfiable (θy = 0). Before introducing Theorems 3 and 4 ,
we need the following lemma to facilitate their proofs.

Lemma 3.

Let
• f be a targeted function;
• P be an implementation of f ;
• MRx and MRy be two MRs of f ;
• MRx be composable with MRy ;
• Sy be a nonempty subset of Ty .

If Sy satisfies MRy and Iy(Sy) violates MRx, then Sy

violates MRxy .

Proof (Lemma 3). Assume that there exists a nonempty Sy ⊆
Ty such that Sy satisfies MRy and Iy(Sy) violates MRx.
Since Sy satisfies MRy , it follows after Definition 4 that

∀ t ∈ Sy (Oy (P [t]) = P [Iy (t)]) . (9)

Because Iy(Sy) violates MRx, it follows after Definition 4
that

∀ t′ ∈ Iy (Sy) (Ox (P [t′]) 6= P [Ix (t
′)]) . (10)

By the definition of Iy(Sy), for any t′ ∈ Iy(Sy), there exists
a t ∈ Sy such that t′ = Iy(t); and for any t ∈ Sy , there exists
a t′ ∈ Iy(Sy) such that t′ = Iy(t). Therefore, Eq. 10 can be
rewritten as follows:

∀ t ∈ Sy (Ox (P [Iy (t)]) 6= P [Ix (Iy (t))]) . (11)

Immediately after Eqs. 9 and 11 , we have

∀ t ∈ Sy (Ox (Oy (P [t])) 6= P [Ix (Iy (t))]) . (12)

Therefore, Sy violates MRxy . �

Theorem 3.

Let
• f be a targeted function;
• P be an implementation of f ;
• MRx and MRy be two MRs of f ;
• MRx be composable with MRy .

Suppose that MRx is violative (θx > 0) and MRy is
satisfiable (θy = 0). If Iy(Ty) = Tx, then MRxy is violative
with θxy = |Ta|

|Ty| > 0 (where Ta 6= ∅, Ta ⊆ Ty , and
Iy(Ta) = T v

x ).

Proof (Theorem 3). To determine θxy , we need to know the set
of source inputs (Txy) and the set of violative source inputs
(T v

xy) of MRxy . It follows from Definition 3 that Txy = Ty .
In what follows, we will prove that, if Iy(Ty) = Tx, then
T v
xy = Ta (where Ta 6= ∅, Ta ⊆ Ty , and Iy(Ta) = T v

x ).
Since MRx is violative, we have Tx = T v

x ∪ T v
x , where

T v
x 6= ∅. Let us assume that: (a) Iy(Ty) = Tx; and (b)
Ta, Tb ⊆ Ty , such that Iy(Ta) = T v

x and Iy(Tb) = T v
x . Since

T v
x 6= ∅, we have Ta 6= ∅ and

Ty = Ta ∪ Tb. (i)

Furthermore, since MRy is satisfiable, it follows after Defi-
nition 5 that Ty satisfies MRy . Therefore, we have

Ta satisfies MRy , (ii)

and

Tb satisfies MRy , if Tb 6= ∅. (iii)

Since we have (ii) and Iy(Ta) violates MRx (as Iy(Ta) =
T v
x by definition), it follows from Lemma 3 that

Ta violates MRxy . (iv)

Furthermore, we have

Ta ⊆ T v
xy , (v)

because T v
xy contains all the elements that violate MRxy .

Next, we consider the following two exhaustive cases:

Case (a): Tb 6= ∅.
Since we have (iii) and Iy(Tb) satisfies MRx (because
Iy(Tb) = T v

x by definition), it follows from Lemma 1 that
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Tb satisfies MRxy . Furthermore, since we have (iv) and
Txy = Ty = Ta ∪ Tb, therefore, T v

xy = Ta.

Case (b): Tb = ∅.
Since we have (v), T v

xy ⊆ Txy = Ty , and Ty = Ta ∪ Tb = Ta,
therefore, we have T v

xy = Ta.

In view of the above two cases, regardless of whether
or not Tb is empty, we have T v

xy = Ta (where Ta 6= ∅,
Ta ⊆ Ty , and Iy(Ta) = T v

x ). It follows after Definition 6
that,

θxy =
|T v

xy|
|Txy|

=
|Ta|
|Ty|

> 0.

In other words, MRxy is violative. �

Theorem 4.

Let
• f be a targeted function;
• P be the implementation of f ;
• MRx and MRy be two MRs of f ;
• MRx be composable with MRy .

Suppose that MRx is violative (θx > 0) and MRy is
satisfiable (θy = 0). If Iy(Ty) = Tx and Iy is bijective,
then MRxy is violative and θxy = θx.

Proof (Theorem 4). Assume that Iy(Ty) = Tx. Since MRx is
violative and MRy is satisfiable, it follows from Theorem 3
that θxy = |Ta|

|Ty| , where Ta 6= ∅, Ta ⊆ Ty , and Iy(Ta) = T v
x .

Furthermore, assume that Iy is bijective. Immediately, we
have |Ta| = |T v

x | and |Tx| = |Ty|. Therefore, θxy =
|Tv

x |
|Tx| .

After Definition 6 , we have θx =
|Tv

x |
|Tx| . In other words,

MRxy is violative and θxy = θx. �

Implication: Theorem 3 provides a sufficient condition
for MRxy to be violative. By contrast, Theorem 4 gives a
sufficient condition for MRxy to be violative and θxy = θx.

4.4 Scenario 4

In this scenario, when MRx is violative (θx > 0) and
MRy is violative (θy > 0), in theory, there may exist an
implementation P for which the composite MR (MRxy) is
satisfiable, because all the errors generated by the violating
source inputs of MRx and MRy may coincidentally offset
each other. However, intuitively speaking, such situation
will rarely occur because it is undoubtedly an extraordi-
nary coincidence. This has led us to propose the following
hypothesis:

Let f be a targeted function, MRx and MRy be its
two MRs, and MRy be composable with MRx. If
Ox is injective, Iy(Ty) = Tx, θx > 0, and θy > 0,
then it is highly likely that MRxy is violative (θxy >
0).

Below we present a theoretical analysis to show why the
above hypothesis is strongly held. Suppose that we have
the following four assumptions:

(1) Ox is injective;
(2) Iy(Ty) = Tx;
(3) θx > 0;
(4) θy > 0.

Immediately after assumptions 3 and 4, we have T v
x 6= ∅ and

T v
y 6= ∅. Also, in view of assumption 2 and the definition of
Tx = T v

x ∪ T v
x , we can define Ta and Tb which are subsets

of Ty , such that Iy(Ta) = T v
x and Iy(Tb) = T v

x . Therefore,
Ty = Ta ∪ Tb. Since T v

x 6= ∅, we have Ta 6= ∅.
There are two schemes to partition Ty : Ty = T v

y ∪T v
y and

Ty = Ta ∪Tb. If we combine both schemes together, then Ty
can be partitioned into the following four sets:

• A1 = Tb ∩ T v
y ;

• A2 = Tb ∩ T v
y ;

• A3 = Ta ∩ T v
y ;

• A4 = Ta ∩ T v
y .

Obviously, Ty = A1 ∪A2 ∪A3 ∪A4.
Next, we prove two important propositions on the above

four assumptions:

Proposition 1: If A2 6= ∅, then A2 violates MRxy .
Proposition 2: If A3 6= ∅, then A3 violates MRxy .

Proof (Proposition 1). Assume that

A2 6= ∅. (i)

By the definition of A2, we have A2 ⊆ T v
y . In other words,

we have

A2 violates MRy . (ii)

Since Iy(A2) = Iy(Tb ∩ T v
y ) ⊆ Iy(Tb) and Iy(Tb) satisfies

MRx (as Iy(Tb) = T v
x by definition), we have

Iy(A2) satisfies MRx. (iii)

With (i), (ii), (iii) above and assumption 1, it follows from
Lemma 2 that A2 violates MRxy . �

Proof (Proposition 2). Assume that

A3 6= ∅. (iv)

By definition of A3, we have A3 ⊆ T v
y . In other words, we

have

A3 satisfies MRy . (v)

Since Iy(A3) = Iy
(
Ta ∩ T v

y

)
⊆ Iy(Ta) and Iy(Ta) violates

MRx (as Iy(Ta) = T v
x by definition), we have

Iy(A3) violates MRx. (vi)

With (iv), (v), and (vi), it follows from Lemma 3 that A3

violates MRxy . �

Next, we will show that there are two tight and restric-
tive relations that are necessary for MRxy to be satisfiable.
By Definition 5 , T v

xy is the set of all elements in Txy that
violate MRxy . Therefore, after Proposition 1, we have

A2 ⊆ T v
xy , (vii)

and after Proposition 2, we have
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TABLE 1: Fault Detection Rates (θxy) of MRxy in Different Testing Scenarios

Scenario θxθxθx θyθyθy max{θx, θy}max{θx, θy}max{θx, θy} θxyθxyθxy

1 = 0 = 0 = 0 θxy = 0 (Theorem 1)

2 = 0 > 0 = θy If Ox is injective, then θxy = θy (Theorem 2)

3 > 0 = 0 = θx
If Iy(Ty) = Tx, then θxy > 0 (Theorem 3)

If Iy(Ty) = Tx and Iy is bijective, then θxy = θx (Theorem 4)

4 > 0 > 0
Varies in different
situations

If Iy(Ty) = Tx and Ox is injective, then it is very likely to have
θxy > 0

A3 ⊆ T v
xy . (viii)

Let us assume that MRxy is satisfiable, that is, T v
xy = ∅

or θxy = 0. Immediately, with (vii) and (viii) above, we have
A2 = A3 = ∅. Because Tb = A1 ∪ A2 = A1 = Tb ∩ T v

y , we
have Tb ⊆ T v

y . Since Ta = A3 ∪ A4 = A4 = Ta ∩ T v
y , we

have Ta ⊆ T v
y . Furthermore, since Ty = Ta ∪ Tb = T v

y ∪ T v
y ,

we have Ta = T v
y and Tb = T v

y . Since Iy(Ta) = T v
x and

Iy(Tb) = T v
x by definition, we have

Iy(T
v
y ) = T v

x , (ix)

and

Iy(T v
y ) = T v

x . (x)

Since (ix) and (x) follow after the assumption that
θxy = 0, they are necessary relations for θxy to be 0. Relation
(ix) implies that, for every violating source test input for
MRy , its corresponding follow-up input must be a violating
source input for MRx. Similarly, relation (x) implies that,
for every non-violating source input for MRy , its corre-
sponding follow-up input must be a non-violating source
input for MRx. Obviously, these two relations are very tight
and restrictive and, hence, they are unlikely to be satisfied
simultaneously. Since the situation of θxy = 0 requires the
simultaneous satisfaction of relations (ix) and (x) (which is
very rare, as explained above), it can be comfortably con-
cluded that the situation of θxy > 0 is very likely to occur.
In summary, the above theoretical analysis has showed that
our hypothesis will be strongly held because of two very
tight and restrictive relations (ix) and (x). We performed an
empirical study to support the above theoretical analysis for
Scenario 4. Details will be given in Section 5.

Table 1 summarizes our theoretical analysis on the fault
detection rates of MRxy in the four different testing scenar-
ios.

5 EMPIRICAL ANALYSIS OF FAULT DETECTION
CAPABILITY

In the first three testing scenarios (Scenarios 1, 2, and 3)
discussed in Sections 4.1 , 4.2 , and 4.3 , we are able to obtain
a definite answer after a theoretical analysis. In other words,
for each of those three scenarios, we have found the char-
acteristics that component MRs should possess to guarantee
that a composite MR has the same chance of detecting the
faults as its component MRs do. On the other hand, Sce-
nario 4 is too complicated to have a definite answer solely
based on a theoretical analysis. Nevertheless, our theoretical
analysis of Scenario 4 has led to a hypothesis, as stated at

the beginning of Section 4.4, which was further verified by
an empirical study to be discussed in this section. We next
discuss the settings and observations of our empirical study.

5.1 Subject Programs
Our empirical study involved the following four subject
programs:
• TriangleSquare (TSQ). It accepts three numbers, corre-

sponding to the three edges of a triangle, and calculates
its area if a legitimate triangle can be formed [30].

• SparseMatrixMultiplication (SMM). It accepts two sparse
matrices 2 as inputs and computes their product ma-
trix [30].

• Dnapars (DNA). It is commonly used in bioinformat-
ics [8]. It takes in a matrix containing a set of species’
DNAs and generates an evolution tree.

• K-Nearest Neighbors (KNN). It is a machine learning
classifier algorithm, which takes in a training data set
and a testing data, and then predicts the label for the
latter based on the former [19].

Table 2 gives more details about these subject programs, in
terms of their inputs, outputs, and the approaches we used
to assert two equivalent outputs.

5.2 Experimental Procedures
We applied the following steps to each subject program:
(1) For each identified MR, manually check its compliance

with Definition 1 . This check is required because Defi-
nition 1 specifies a special (but common) class of MRs
that our study has assumed.

(2) For any tuple of two MRs (MRx,MRy), use Definition
2 to manually check whether MRx is composable with
MRy . If yes, then check whether: (a) Ox is injective; and
(b) Iy(Ty) = Tx. If yes to both (a) and (b), then generate
the composite MR (MRxy) from MRx and MRy .

(3) Apply mutation analysis and random testing to esti-
mate individual fault detection rates for MRx, MRy ,
and MRxy .

5.3 Component and Composite MRs
Table 3 lists all the MRs used in our study; they were
sourced from previous MT-related studies [8], [19], [30]. All
these MRs were then checked and confirmed to comply with
Definition 1 (see step 1). There were 23 (7 + 7 + 6 + 3) such
MRs for the four subject programs. The 3rd column of this

2. A sparse matrix is a matrix in which most of the elements are zero.
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TABLE 2: Inputs, Outputs, and Equivalent Output Assertions of Subject Programs

Subject
Programs Inputs (ttt) Outputs (f(t))(f(t))(f(t)) Assertion of Equivalent Outputs

TSQ t = 〈a, b, c〉, where a, b, and c denote the
three edges of a triangle

If the three edges form a legit-
imate triangle, then f(t) = s,
where s denotes the area of the
triangle

Let s and s′ denote two outputs. Then,
s = s′ iff |s− s′| < ε †.

SMM
t = 〈A,B〉, where A and B denote
two sparse matrices in the Compressed
Sparse Row (CSR) format

f(t) = C, where C denotes the
product of A and B

Let C = [eij ] and C′ = [e′ij ] denote
two outputs. Then, C = C′ iff for all
|e′ij − e′ij | < ε †.

DNA

t = X , where X denotes the species’
DNAs and is in the format of a (n×m)
matrix (n = number of species; m =
length of a DNA sequence)

f(t) = 〈tl, tree〉, where tl
and tree denote the length and
the structural description of the
generated evolution tree, re-
spectively

Let 〈tl, tree〉 and 〈tl′, tree′〉 denote two
outputs. Then, 〈tl, tree〉 = 〈tl′, tree′〉 iff
|tl − tl′| < ε † and tree is identical to
tree′.

KNN

t = 〈X,C, S〉, where X denotes the
attributes of the training data set in the
format of a (k×m) matrix (k = number
of entries of the training data set; m =
number of attributes of each entry), C
denotes the class labels of the training
data with a size of k, and S denotes the
testing item’s attributes with a size of m
elements

f(t) = cl, where cl denotes the
calculated class label for S

Let cl and cl′ denote two class labels.
Then, cl = cl′ iff cl and cl′ are exactly
the same.

(†) ε is an extremely small value and is set to 10−6.

table gives the details on these MRs. For each such MR, we
also explicitly list its set of source inputs (4th column), input
mapping (5th column), and output mapping (6th column) in
the table.

For any tuple of two MRs (MRx, MRy), checks were
performed to ensure that conditions (a) and (b) in step 2
were fulfilled. After checking for all the tuples of two MRs,
a total of 106 (TSQ=42, SMM=42, DNA=16, and KNN=6)
eligible pairs of component MRs were found, thereby re-
sulting in the construction of 106 composite MRs. As an
example, let us consider MR1 and MR2 of TSQ in Table 3 .
We write the function corresponding to TSQ as f . It can
be deduced that: (a) T2 = I1(T1) = T1 = I2(T2) = T
because both I1 and I2 are bijective mappings from T to
T ; and (b) R2 = O1(R1) = R1 = O2(R2) = f(T ) because
both O1 and O2 are bijective mappings from f(T ) to f(T ).
It then follows from Definition 2 that MR1 and MR2 are
composable with each other. Therefore, MR12 and MR21

were formed and tested in our study.

5.4 Measurement of Fault Detection Rates and Genera-
tion of Mutants

According to Definition 6 , the fault detection rate of an MR
with respect to a program P is the ratio of |T v| (the size of
the MR’s set of violative source inputs) to |T | (the size of
the MR’s set of source inputs). However, because the size
of T is often very large, therefore it is practically infeasible
to conduct exhaustive testing to determine the value of T v .
In turn, we cannot compute an MR’s fault detection rate
based on Definition 6 . Therefore, in this study, we used
the following equation as the ”estimator” of an MR’s fault
detection rate (θ):

θ ' Nv

N
,

where Nv denotes the number of tested source inputs that
caused violations to a given MR, and N denotes the total
number of source inputs used in testing.

Mutation analysis [32] has long been used in MT to
evaluate the fault detection rate of MRs (e.g., in [19]). Thus,
we also used the mutation technique (together with random
testing) to estimate the fault detection rates of component
and composite MRs. Table 4 shows the mutants of the
four subject programs with injected faults. We randomly
generated 10 000 (N = 10 000) source inputs for each of
the four subject programs.

For each mutant of every subject program, we then
performed two operations: (a) used each identified compo-
nent MR and each constructed composite MR to generate
a separate set of follow-up inputs from the set of source
inputs (with a size of 10 000); and (b) executed these source
inputs and follow-up inputs with the mutants and checked
for violations to MRs.

5.5 Experimental Observations

Table 5 shows the estimated fault detection rates of compo-
nent and composite MRs when θx > 0 and θy > 0 (a total of
108 such cases). The complete set of experimental data of the
estimated fault detection rates for the four subject programs
are given in Tables 7, 8, and 9 in the Appendix (as a separate
file).

For ease of comparison and analysis, based on the
data in Table 5 , Fig. 1 shows the values of min{θx, θy},
max{θx, θy}, and θxy (where θx > 0 and θy > 0) for each
Test Reference Number. Each subfigure of Fig. 1 corresponds
to a subject program, and its x-axis corresponds to the
relevant column ”Test Reference No.” of Table 5 .

Fig. 1 and Table 5 together result in the following three
observations:

(1) For all cases where θx > 0 and θy > 0, we have θxy > 0.
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TABLE 3: List of MRs Used in the Empirical Study

Sub.
Pro. MRs Description TTT Input Mapping Output Mapping

TSQ

MR1 If 〈a′, b′, c′〉 = 〈b, a, c〉, then s′ = s T1 = T I1(〈a, b, c〉) = 〈b, a, c〉 O1(s) = s
MR2 If 〈a′, b′, c′〉 = 〈a, c, b〉, then s′ = s T2 = T I2(〈a, b, c〉) = 〈a, c, b〉 O2(s) = s
MR3 If 〈a′, b′, c′〉 = 〈c, b, a〉, then s′ = s T3 = T I3(〈a, b, c〉) = 〈c, b, a〉 O3(s) = s
MR4 If 〈a′, b′, c′〉 = 〈2a, 2b, 2c〉, then s′ = 4s T4 = T I4(〈a, b, c〉) = 〈2a, 2b, 2c〉 O4(s) = 4s

MR5
If 〈a′, b′, c′〉 = 〈

√
2b2 + 2c2 − a2, b, c〉, then

s′ = s
T5 = T I5(〈a, b, c〉) = 〈

√
2b2 + 2c2 − a2, b, c〉 O5(s) = s

MR6
If 〈a′, b′, c′〉 = 〈a,

√
2a2 + 2c2 − b2, c〉, then

s′ = s
T6 = T I6(〈a, b, c〉) = 〈a,

√
2a2 + 2c2 − b2, c〉 O6(s) = s

MR7
If 〈a′, b′, c′〉 = 〈a, b,

√
2a2 + 2b2 − c2〉, then

s′ = s
T7 = T I7(〈a, b, c〉) = 〈a, b,

√
2a2 + 2b2 − c2〉 O7(s) = s

SMM

MR1 If 〈A′, B′〉 = 〈BT , AT 〉, then A′B′ = AB T1 = T I1(〈A,B〉) = 〈BT , AT 〉 O1(C) = CT

MR2 If 〈A′, B′〉 = 〈PA,B〉, then A′B′ = P (AB) T2 = T I2(〈A,B〉) = 〈PA,B〉 O2(C) = PC
MR3 If 〈A′, B′〉 = 〈A,BP 〉, then A′B′ = (AB)P T3 = T I3(〈A,B〉) = 〈A,PB〉 O3(C) = CP
MR4 If 〈A′, B′〉 = 〈QA,B〉, then A′B′ = Q(AB) T4 = T I4(〈A,B〉) = 〈QA,B〉 O4(C) = QC
MR5 If 〈A′, B′〉 = 〈A,BQ〉, then A′B′ = (AB)Q T5 = T I5(〈A,B〉) = 〈A,BQ〉 O5(C) = CQ
MR6 If 〈A′, B′〉 = 〈cA,B〉, then A′B′ = c(AB) T6 = T I6(〈A,B〉) = 〈cA,B〉 O6(C) = cC
MR7 If 〈A′, B′〉 = 〈A, cB〉, then A′B′ = c(AB) T7 = T I7(〈A,B〉) = 〈A, cB〉 O7(C) = cC

DNA

MR1

If X′ is generated by swapping two sites
(two columns) of X , then tl′ = tl and
tree′ = tree

T1 = T I1(X) = XP O1(〈tl, tree〉) = 〈tl, tree〉

MR2

If X′ is generated by inserting k, say 5,
uninformative sites to X , then tl′ = tl and
tree′ = tree

T2 = T I2(X) = [X,U ], where U is a (n × k)
matrix with all its elements identical O2(〈tl, tree〉) = 〈tl, tree〉

MR3

If X′ is generated by removing all unin-
formative sites from X , then tl′ = tl and
tree′ = tree

T3 = T I3(X) removes those columns in X ,
which have identical elements O3(〈tl, tree〉) = 〈tl, tree〉

MR4

If X′ is generated by concatenating the du-
plication X to X itself, then tl′ = 2tl and
tree′ = tree

T4 = T I4(X) = [X,X] O4(〈tl, tree〉) = 〈2tl, tree〉

MR5

IfX has only four rows, andX′ is generated
by adding a hyper-variable site to X , then
tree′ = tree

T5 ⊂ T
I5(X) = [X,S], where S denotes the
hyper-variable site O5(〈tl, tree〉) = tree

MR6
If X′ is constructed by permutating the al-
phabets in X , then tl′ = tl and tree′ = tree

T6 = T I6(X) is an alphabets permutation
function O6(〈tl, tree〉) = 〈tl, tree〉

KNN

MR1

If X′ and S′ are generated by affine trans-
formation, such that g(X) = g([xij ]) =
[αxij + β], then cl′ = cl

T1 = T I1(〈X,C, S〉) = 〈g(X), C, g(S)〉 O1(cl) = cl

MR2

If C′ is generated by a permutation function
on C, that is C′ = Perm(C), then cl′ =
Perm(cl)

T2 = T I2(〈X,C, S〉) = 〈X,Perm(C), S〉 O2(cl) = Perm(cl)

MR3

If X′ and S′ are generated by permutating
m columns of X and S, respectively, then
cl′ = cl

T3 = T I3(〈X,C, S〉) = 〈XP,C, SP 〉 O3(cl) = cl

NOTE:
• T is the set of source inputs for an MR.
• T denotes the domain of a targeted function f .
• For SMM, DNA, and KNN, P denotes a matrix which is obtained by swapping two rows of the identity matrix I , and Q denotes a matrix

which is obtained by multiplying one of the main principal elements of I with a scalar c.

(2) The situation where θxy ≥ min{θx, θy} was found in
all cases.

(3) In a large majority of the cases (79/108 = 73.15%), the
situation where θxy ≥ max{θx, θy} was found.

In summary, our empirical study showed that, θxy is
never smaller than θx or θy , and θxy is very likely to be
at least equal to the maximum of θx and θy (where θx
and θy are both positive). Thus, the study results strongly
supported our hypothesis as stated at the beginning of
Section 4.4 .

5.6 Threats to Validity
We discuss the possible threats to validity from the follow-
ing four aspects:

MR identification: As mentioned in Section 5.3 , all the
(component) MRs used in our empirical study were sourced
from previous MT-related studies [8], [19], [30]. Thus, the

validity of those MRs as the necessary properties of the
relevant programs was already established in published
works. Therefore, no threat to validity should exist in this
aspect.

MT implementation: This task involved the following
steps: (a) generating composite MRs from the sourced com-
ponent MRs (if applicable); (b) generating source inputs
for each subject program; (c) generating follow-up inputs
based on the component MRs and the composite MRs;
(d) executing the mutants of each subject program with the
relevant sets of source inputs and follow-up inputs; and
(e) verifying the relationships between the outputs for the
source and follow-up inputs. Steps (b) to (e) were fairly
simple, and their implementations were straightforward. As
a result, the probability of introducing mistakes in these four
steps should be very low. Nevertheless, the correctness of
these steps was thoroughly checked. On the other hand, for
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Fig. 1: Comparison among min{θx, θy}, max{θx, θy}, and θxy .

step (a), the composition of MRs should not be complex.
However, as a precaution to ensure that the generated
composite MRs were valid with respect to their correspond-
ing subject programs, we performed two tasks. Firstly, we
conducted a desk check on these composite MRs, during
which we detected no abnormality. Secondly, we tested all
the four subject programs (their ”original” versions; not
their mutants) against these composite MRs. The testing
results did not reveal any MR violation. To a large extent,
these two tasks provide assurance that the composite MRs
were correctly generated.

Subject program selection: Undoubtedly, it would be
desirable to have a large set of programs for our empirical
study. However, using a large set of programs was prohib-
ited due to resource constraints. Nevertheless, using these
four subject programs still provided a good insight into
the validity of the hypothesis as stated at the beginning
of Section 4.4 because these programs cover: (a) different
application domains, including numerical calculations (TSQ
and SMM), bioinformatics (DNA), and machine learning
classifiers (KNN); and (b) different levels of complexity
(TSQ and KNN are relatively less complex in logic, whereas
SMM and DNA are relatively more complex).

Mutant generation and selection: The mutants used for
TSQ, SMM, and DNA were sourced from other previous
studies [8], [30], whereas the mutants used for KNN were

generated by us (because we could not find mutants for
this program from the published work). To a large extent,
selecting mutants from previous studies for TSQ, SMM,
and DNA helped reduce experimental bias. Whereas for
KNN, mutants were randomly generated in accordance with
the different types of mutation operators published in [32].
Thus, these generated mutants should form a representative
set for our empirical study.

6 DISCUSSION

6.1 A General Guideline for MR Composition

Based on our theoretical and empirical analyses, we have
the following convenient yet effective general guideline for
performing MR composition:

A General Guideline for MR Composition

Let
• f be a targeted function;
• MRx and MRy be two MRs of f .

To improve the cost-effectiveness of MT, MRxy should
be used instead of MRx and MRy if:
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TABLE 4: Mutants of Subject Programs

Sub.
Pro.

Mu.
ID Code Change for Mutant Generation

TSQ

µ1 Swap lines 6 and 8
µ2 Replace ”p=(a+b+c)/2” by ”p=(a+b+c)*2” in line 22
µ3 Replace ”/2” by ”*2” in lines 32, 40, and 48

µ4
Replace ”(math.sqrt(3.0)*a*a)/4.0” by ”(math.sqrt(3.0)*a*a)/2.0”
in line 102

SMM

µ1 Replace ”n” by ”1” in line 43
µ2 Replace ”c[nz] = aij * b[k]” by ”c[nz] = aij” in line 52
µ3 Replace ”c[nz] = aij * b[k]” by ”c[nz] = b[k]” in line 52
µ4 Replace ”c[icol] += aij*b[k]” by ”c[icol] += aij” in line 56
µ5 Replace ”c[icol] += aij*b[k]” by ”c[icol] += b[k]” in line 56

DNA

µ1 Replace ”ns=1<<G” by ”ns=1<<C” in line 720 in file ”seq.c”

µ2
Replace ”ally[alias[i-1]-1]!=alias[i-1]” by
”ally[alias[i-1]-1]>=alias[i-1]” in line 553 in file ”seq.c”

µ3 Replace ”i<b” by ”i<=” in line 1097 in file ”seq.c”
µ4 Replace ”j=i+1” by ”j=i-1” in line 555 in file ”seq.c”
µ5 Replace ”i<=(long)O” by ”i>(long)O” in line 994 in file ”seq.c”

µ6
Replace ”itemp=alias[i-1]” by ”itemp=alias[i+1]” in line 563 in
file ”seq.c”

µ7
Replace ”j<=(long)O” by ”j>=(long)O” in line 1119 in file
”seq.c”

µ8
Replace ”p->numsteps[i]+=weight[i]” by
”p->numsteps[i]-=weight[i]” in line 946 in file ”seq.c”

µ9 Replace ”j<=(long)O” by ”j>(long)O” in line 1126 in file ”seq.c”
µ10 Replace ”(i==j)” by ”(i!=j)” in line 2700 in file ”seq.c”

KNN

µ1 Replace ”-” by ”/” in line 29 in function ”euclideanDistance”
µ2 Replace ”-” by ”+” in line 29 in function ”euclideanDistance”
µ3 Replace ”+=” by ”=” in line 29 in function ”euclideanDistance”

µ4
Replace ”math.sqrt(distance)” by ”distance” in line 32 in func-
tion ”euclideanDistance”

µ5
Replace ”reverse=True” by ”reverse=False” in line 41 in function
”getNeighbors”

µ6 Swap lines 57 and 59 in function ”getResponse”
µ7 Replace ”+=” by ”*=” in line 52 in function ”getResponse”
µ8 Replace ”+=” by ”=” in line 52 in function ”getResponse”

µ9
Replace ”reverse=True ” by ”reverse=False” in line 55 in func-
tion ”getResponse”

(a) both MRx and MRy belong to the special class of
MRs in accordance with Definition 1 ;

(b) MRx is composable with MRy according to Defini-
tion 2 ;

(c) Iy(Ty) = Tx, Iy is bijective, and Ox is injective.

In the above guideline, condition (c) involves applying The-
orems 2, 3, and 4 as discussed in Section 4. This condition
also involves the hypothesis stated at the beginning of
Section 4.4, which was confirmed by our empirical analysis
(Section 5) to be highly likely to be held true. When the
injectivity/bijectivity requirement of our guideline does not
hold, testers should consider other information about the
program under test, and the amount of testing resources
available, to inform their own decisions on MR composition.
For example, if the program has a long execution time,
then the reduction in program executions achieved by using
composite MRs (even at the expense of a slight deterioration
in fault detection effectiveness) may still be a better choice.

Table 1 summaries the fault detection capability of MRxy

in four different testing scenarios. It can be seen from Table
1 that, in three of the four scenarios (Scenarios 1, 2, and
3), the fault detection capability of the composite MR (i.e.,
MRxy) is identical to those of applying both MRx and
MRy , if the three preconditions of the general guideline
are satisfied. Since fewer test cases are required for testing
MRxy when compared with using both MRx and MRy , the
cost-effectiveness of MT in using MRxy (instead of MRx

and MRy) is obviously improved in these three scenarios.
Even in Scenario 4 where a definite conclusion on the fault
detection capability of MRxy (when compared with MRx

and MRy) cannot be drawn, we argue that it is very likely
that the cost-effectiveness of MRxy is higher than MRx and
MRy because of two reasons: (a) the situation where θxy = 0
should rarely occur according to our theoretical analysis (see
Section 4.4 ), which was further confirmed to be true by our
empirical analysis (see observation 1 in Section 5.5 ); and
(b) our empirical analysis showed that θxy ≥ min{θx, θy}
for all cases and, in about three-quarter of the cases, we have
θxy ≥ max{θx, θy} (see observations 2 and 3 in Section 5.5 ).

6.2 Applicability of our General Guideline

To evaluate the practicality and usefulness of our general
guideline on MR composition, we reviewed a set of pub-
lished papers on MT through which the following two
questions could be answered:

Q1: How likely is it that a given MR belongs to the special
class, in accordance with Definition 1?

Q2: Given an MR that belongs to the special class, according
to Definition 1 , how likely is this MR to have a bijective
input mapping I and an injective output mapping O?

We first studied in detail two recent survey papers on
MT [37], [38], and then identified some other works on
MT that have been developed after publishing those two
surveys. After these exercises, we identified 10 popular
application domains for MT as shown in Table 6 . For each
of these domains, we found some relevant published works
related to MT. After a close examination, we compiled a list
of MRs which were mentioned in these published works.
Further checking of the list allowed us to identify some
”common” MRs with similar types or characteristics within
the same domain and even across different domains. These
”common” MRs were counted only once in our review. For
example, among the three MT-related papers on compilers,
after tallying the count for ”common” MRs, we found eight
distinct MRs. We caution readers that, although our review
did not (which was also infeasible to) involve every MT-
related paper, we argue that the compiled list of MRs from
our collected papers was fairly comprehensive because the
list of MRs covered 10 different and popular domains for
MT.

For Q1, we found 54.88% of MRs belong to the spe-
cial class, in accordance with Definition 1 . For Q2, we
found that, among those MRs complying with Definition
1 , 91.11% of them have a bijective I and an injective O.
Based on these findings for Q1 and Q2, we can conclude
that the three preconditions in our general MR composition
guideline can easily be met (50.00% ≈ 54.88% × 91.11%).
This shows that our general guideline should be widely ap-
plicable to many testing scenarios and application domains.

We also noted that the applicability of our guideline
varies across different application domains. More specifi-
cally, according to the results in 6, the guideline is largely
applicable to compilers, numeric and scientific programs,
and AI systems (e.g., image processing and autonomous
car systems), and relatively less applicable to biomedical
applications, web services, embedded systems, and online
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TABLE 5: Estimated Fault Detection Rates of Component and Composite MRs (where θx > 0 and θy > 0)

Sub.
Pro.

Test
Reference

No.

Mu.
ID θxθxθx θyθyθy θxyθxyθxy

Sub.
Pro.

Test
Reference

No.

Mu.
ID θxθxθx θyθyθy θxyθxyθxy

TSQ

1 µ1 θ1: 0.4482 θ3: 0.4356 θ13: 0.4482

SMM

17 µ4 θ1: 0.9962 θ7: 0.9969 θ17: 0.9969
2 µ1 θ3: 0.4356 θ1: 0.4482 θ31: 0.4356 18 µ4 θ7: 0.9969 θ1: 0.9962 θ71: 0.9962
3 µ1 θ1: 0.4482 θ5: 0.4372 θ15: 0.6605 19 µ4 θ5: 0.9969 θ7: 0.9969 θ57: 0.9969
4 µ1 θ5: 0.4372 θ1: 0.4482 θ51: 0.4372 20 µ4 θ7: 0.9969 θ5: 0.9969 θ75: 0.9969
5 µ1 θ1: 0.4482 θ6: 0.2123 θ16: 0.4372 21 µ5 θ1: 0.9962 θ4: 0.9968 θ14: 0.9962
6 µ1 θ6: 0.2123 θ1: 0.4482 θ61: 0.6605 22 µ5 θ4: 0.9968 θ1: 0.9962 θ41: 0.9968
7 µ1 θ1: 0.4482 θ7: 0.2249 θ17: 0.2249 23 µ5 θ1: 0.9962 θ6: 0.9968 θ16: 0.9962
8 µ1 θ7: 0.2249 θ1: 0.4482 θ71: 0.2249 24 µ5 θ6: 0.9968 θ1: 0.9962 θ61: 0.9969
9 µ1 θ3: 0.4356 θ5: 0.4372 θ35: 0.6605 25 µ5 θ4: 0.9968 θ6: 0.9968 θ46: 0.9968
10 µ1 θ5: 0.4372 θ3: 0.4356 θ53: 0.4372 26 µ5 θ6: 0.9968 θ4: 0.9968 θ64: 0.9968
11 µ1 θ3: 0.4356 θ6: 0.2123 θ36: 0.2123

DNA

1 µ2 θ1: 0.0774 θ2: 0.2085 θ12: 0.2071
12 µ1 θ6: 0.2123 θ3: 0.4356 θ63: 0.2123 2 µ2 θ2: 0.2085 θ1: 0.0774 θ21: 0.205
13 µ1 θ3: 0.4356 θ7: 0.2249 θ37: 0.4372 3 µ2 θ3: 0.1116 θ1: 0.0774 θ31: 0.1444
14 µ1 θ7: 0.2249 θ3: 0.4356 θ73: 0.6605 4 µ2 θ1: 0.0774 θ4: 0.9936 θ14: 0.9943
15 µ1 θ5: 0.4372 θ6: 0.2123 θ56: 0.4372 5 µ2 θ4: 0.9936 θ1: 0.0774 θ41: 0.9938
16 µ1 θ6: 0.2123 θ5: 0.4372 θ65: 0.4372 6 µ2 θ1: 0.0774 θ6: 0.2522 θ16: 0.2543
17 µ1 θ5: 0.4372 θ7: 0.2249 θ57: 0.4372 7 µ2 θ6: 0.2522 θ1: 0.0774 θ61: 0.2515
18 µ1 θ7: 0.2249 θ5: 0.4372 θ75: 0.4372 8 µ2 θ3: 0.1116 θ2: 0.2085 θ32: 0.1116
19 µ1 θ6: 0.2123 θ7: 0.2249 θ67: 0.4372 9 µ2 θ2: 0.2085 θ4: 0.9936 θ24: 0.9869
20 µ1 θ7: 0.2249 θ6: 0.2123 θ76: 0.4372 10 µ2 θ4: 0.9936 θ2: 0.2085 θ42: 0.9799
21 µ2 θ5: 0.6652 θ6: 0.6636 θ56: 1.0 11 µ2 θ2: 0.2085 θ6: 0.2522 θ26: 0.2434
22 µ2 θ6: 0.6636 θ5: 0.6652 θ65: 1.0 12 µ2 θ6: 0.2522 θ2: 0.2085 θ62: 0.8355
23 µ2 θ5: 0.6652 θ7: 0.6762 θ57: 1.0 13 µ2 θ3: 0.1116 θ4: 0.9936 θ34: 0.9948
24 µ2 θ7: 0.6762 θ5: 0.6652 θ75: 1.0 14 µ2 θ3: 0.1116 θ6: 0.2522 θ36: 0.2567
25 µ2 θ6: 0.6636 θ7: 0.6762 θ67: 1.0 15 µ2 θ4: 0.9936 θ6: 0.2522 θ46: 0.995
26 µ2 θ7: 0.6762 θ6: 0.6636 θ76: 1.0 16 µ2 θ6: 0.2522 θ4: 0.9936 θ64: 0.995
27 µ3 θ5: 0.5487 θ6: 0.5471 θ56: 0.6605 17 µ3 θ3: 0.07 θ2: 0.8059 θ32: 0.07
28 µ3 θ6: 0.5471 θ5: 0.5487 θ65: 0.6605 18 µ4 θ3: 0.0698 θ2: 0.237 θ32: 0.0698
29 µ3 θ5: 0.5487 θ7: 0.5597 θ57: 0.6605 19 µ4 θ2: 0.237 θ4: 1.0 θ24: 1.0
30 µ3 θ7: 0.5597 θ5: 0.5487 θ75: 0.6605 20 µ4 θ4: 1.0 θ2: 0.237 θ42: 1.0
31 µ3 θ6: 0.5471 θ7: 0.5597 θ67: 0.6605 21 µ4 θ2: 0.237 θ6: 0.261 θ26: 0.2851
32 µ3 θ7: 0.5597 θ6: 0.5471 θ76: 0.6605 22 µ4 θ6: 0.261 θ2: 0.237 θ62: 0.9999
33 µ4 θ5: 0.1115 θ6: 0.1115 θ56: 0.1115 23 µ4 θ3: 0.0698 θ4: 1.0 θ34: 1.0
34 µ4 θ6: 0.1115 θ5: 0.1115 θ65: 0.1115 24 µ4 θ3: 0.0698 θ6: 0.261 θ36: 0.2559
35 µ4 θ5: 0.1115 θ7: 0.1115 θ57: 0.1115 25 µ4 θ4: 1.0 θ6: 0.261 θ46: 1.0
36 µ4 θ7: 0.1115 θ5: 0.1115 θ75: 0.1115 26 µ4 θ6: 0.261 θ4: 1.0 θ64: 1.0
37 µ4 θ6: 0.1115 θ7: 0.1115 θ67: 0.1115 27 µ5 θ3: 0.214 θ2: 0.9984 θ32: 0.214
38 µ4 θ7: 0.1115 θ6: 0.1115 θ76: 0.1115 28 µ6 θ3: 0.068 θ2: 0.2307 θ32: 0.068

SMM

1 µ1 θ1: 0.9996 θ2: 1.0 θ12: 0.9996 29 µ6 θ2: 0.2307 θ4: 0.9735 θ24: 0.9753
2 µ1 θ2: 1.0 θ1: 0.9996 θ21: 0.9997 30 µ6 θ4: 0.9735 θ2: 0.2307 θ42: 0.9753
3 µ2 θ1: 1.0 θ4: 1.0 θ14: 1.0 31 µ6 θ2: 0.2307 θ6: 0.2704 θ26: 0.2809
4 µ2 θ4: 1.0 θ1: 1.0 θ41: 1.0 32 µ6 θ6: 0.2704 θ2: 0.2307 θ62: 0.2891
5 µ2 θ1: 1.0 θ6: 1.0 θ16: 1.0 33 µ6 θ3: 0.068 θ4: 0.9735 θ34: 0.9748
6 µ2 θ6: 1.0 θ1: 1.0 θ61: 1.0 34 µ6 θ3: 0.068 θ6: 0.2704 θ36: 0.267
7 µ2 θ4: 1.0 θ6: 1.0 θ46: 1.0 35 µ6 θ4: 0.9735 θ6: 0.2704 θ46: 0.986
8 µ2 θ6: 1.0 θ4: 1.0 θ64: 1.0 36 µ6 θ6: 0.2704 θ4: 0.9735 θ64: 0.986
9 µ3 θ1: 1.0 θ5: 1.0 θ15: 1.0 37 µ9 θ3: 0.214 θ2: 1.0 θ32: 0.214

10 µ3 θ5: 1.0 θ1: 1.0 θ51: 1.0 38 µ10 θ3: 0.0753 θ2: 0.6398 θ32: 0.0753
11 µ3 θ1: 1.0 θ7: 1.0 θ17: 1.0

KNN

1 µ3 θ1: 0.0032 θ3: 0.4465 θ13: 0.4413
12 µ3 θ7: 1.0 θ1: 1.0 θ71: 1.0 2 µ3 θ3: 0.4465 θ1: 0.0032 θ31: 0.4479
13 µ3 θ5: 1.0 θ7: 1.0 θ57: 1.0 3 µ6 θ1: 0.0022 θ2: 0.9401 θ12: 0.9454
14 µ3 θ7: 1.0 θ5: 1.0 θ75: 1.0 4 µ6 θ2: 0.9401 θ1: 0.0022 θ21: 0.9418
15 µ4 θ1: 0.9962 θ5: 0.9969 θ15: 0.9969 5 µ9 θ1: 0.0013 θ2: 0.0995 θ12: 0.1024
16 µ4 θ5: 0.9969 θ1: 0.9962 θ51: 0.9962 6 µ9 θ2: 0.0995 θ1: 0.0013 θ21: 0.1022

search engines. We caution readers that this observation is
based on the MRs reported in the literature. To date, only a
relatively small set of MRs for compilers have been studied,
and they all involve equality relations between source and
follow-up outputs. This makes the guideline applicable to
most of these MRs. Due to the nature of numeric and scien-
tific application domains, the input and output mappings of
the reported MRs are often composable and bijective, and
therefore the guideline is also mostly applicable to these
domains. Furthermore, image processing and autonomous
driving systems are currently the main AI systems using

MT. Most of the MRs defined for these systems are based on
spatial transformation mappings that are composable and
bijective, resulting in the applicability of the guideline in
these domains. On the other hand, the reported MRs for
biomedical applications, web services, embedded systems
and online search engines often involve subset or substring
relations, which are less likely to have bijective input and
output mappings. The guideline, therefore, is less applicable
to such systems. However, we also wish to highlight that
this observation may vary as more MRs emerge.
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TABLE 6: Applicability of the Guideline

Application Domains References
No. of

Identified
MRs

No. of MRs
complying
with Def. 1

No. of MRs whose
III is bijective and
OOO is injective

Answer
to Q1 (%)

Answer
to Q2 (%)

Biomedical applications [6], [7], [8] 42 12 12 28.57 100.00
Web services [9], [10] 9 3 3 33.33 100.00
Embedded systems [11], [12] 3 0 0 0.00 0.00
Component-based software [13] 3 2 2 66.67 100.00
Compilers [14], [15], [16] 8 8 5 100.00 62.50
Machine learning classifiers [17], [18], [19], [20], [21] 16 7 7 43.75 100.00
Online search engines [22], [23], [24] 9 0 0 0.00 0.00
Assorted computer science algo-
rithms [33], [34], [35] 27 16 11 59.26 68.75

Numerical and scientific programs [30], [36] 17 14 14 82.35 100.00
AI systems (e.g., image processing
and autonomous car systems) [25], [26], [27], [28] 30 28 28 93.33 100.00

Total 164 90 82 54.88 91.11

6.3 Related Work
Two major challenges for MT are: (a) identification of MRs;
and (b) additional computations of the program executions
for follow-up test cases. Although MR composition can ad-
dress both challenges, only few papers primarily focused on
the effectiveness of MR composition — we found only two
papers [30], [31] in this area. Obviously, MR composition
reduces the number of program executions and, hence, low-
ers the computation costs — this is indisputable. However,
these two studies on MR composition [30], [31] do not have
a consensus on whether or not the fault detection capability
after composition will be jeopardized. Furthermore, both
studies [30], [31] adopted a purely empirical approach.
Therefore, their observations could not provide a full picture
of this issue and are dependent on the subjects being in-
vestigated. Understandably, some of their observations may
look contradictory, that is, they reach different conclusions
on the fault detection effectiveness of the composite MRs.
On the other hand, with our theoretical results, such illusive
contradictions are clarified. In summary, their results [30],
[31] motivated our study, which in turn provides a more
comprehensive interpretation of their results.

MR composition is an obvious and straightforward
method to generate new MRs that is easily implemented and
automated. However, this method requires the existence
of some MRs for generation of new ones. Recently, with
the increasing recognition and acceptance of MT by the
software testing community, a growing number of research
studies on MR generation/identification has emerged. Ex-
amples of these studies include machine-learning-based
techniques [39], [40], [41], search-based techniques [42],
[43], data-mutation-based techniques [26], [44], [45], pattern-
based techniques [46], [47], and the category-choice ap-
proach [48], [49]. Since the main focus of this paper is not on
MR generation, comparing our work with the above studies
is beyond the scope of this paper.

7 SUMMARY AND CONCLUSION

Two major advantages of MR composition are the facili-
tation of automatic MR generation, and the reduction in
testing costs (by reducing the number of program executions
for follow-up test cases). However, MR composition has a

potential drawback: The fault detection capability of the
composite MR may be lower than that of its component
MRs, jeopardizing the overall effectiveness of MT. This issue
motivated us to perform theoretical and empirical analyses,
with a goal of identifying characteristics that the component
MRs should possess so that the fault detection capability of
the generated composite MR will likely not be less than that
of its component MRs. In short, given a pair of metamorphic
relations MRx and MRy that belong to the special class
defined in Definition 1, where MRx is composable with
MRy , they should be used to form a composite MRxy if both
the following conditions are met: (a) the output mapping of
MRx is injective; and (b) the input mapping of MRy is a
bijective mapping from the source inputs of MRy to the
source inputs of MRx. This result is produced based on
Theorems 1 to 4, Propositions 1 and 2, and the empirical
analysis discussed in the paper. This result provides a solid
foundation for MT and has paved a path for future studies
on MR composition.

Based on our theoretical and empirical analyses, a conve-
nient yet effective general guideline on MR composition has
been developed. We further performed studies (by using a
sample of MRs extracted from previously published works
on MT) to confirm the applicability of the guideline across a
range of application domains.

Our study has focused on a special class of MRs, as
stated in Definition 1. Although this class of MRs is com-
mon, it would be worthwhile to extend our study to ex-
amine MRs that are outside this class. A hierarchy of com-
posable MRs and their composite MRs could then be built. It
would be interesting to investigate what further information
and insights could be exploited from this hierarchy, using
the theoretical results reported in this paper. This future
study would enhance the foundation of MT research. An-
other potentially fruitful direction is a large-scale empirical
analysis of the relationships among θxy , min{θx, θy}, and
max{θx, θy}. The results of this empirical analysis would
help practitioners better estimate their testing costs.
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